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Abstract—We examine the dynamics of the elastic inverted
pendulum with a tip mass under horizontal harmonic excitation.
In particular, we study the conditions when the potential barrier
is overcome by the tip mass, and large amplitude oscillations
occur, by means of the Melnikov criterion. The results have been
confirmed by numerical simulations.

I. INTRODUCTION

Dymanical behavior of elastic inverted pendulum with a tip
mass on one side and other side fixed to the moving base has
been analyzed for many years [1], [2], [3], [4]

Recently a larger interest has been focused on beam-mass
systems by the occasion of the broadband vibration energy
harvester [5], [6]. A new model of an inverted beam coupled to
piezoelectric transducer were proposed [7], [8]. The inverted
beam has a tip mass such that vertical position is unstable
and the beam buckles, giving a double well potential due to
gravitational loading. The simulations used harmonic [7] and
also stochastic [8] kinematic forcing. In this system, due to
nonlinearities of a buckled beam, Friswell et al. [7] showed
a multiple solution response, which was presented on the
bifurcation diagram. In the present note we discuss that feature
by means of the Melnikov approach and basins of attraction.
In our case we study a simplified model with a single degree-
of-freedom and with a linear effective damping term as in [1],

(2], [3].
II. THE MODEL AND EQUATIONS

Our simplified model equations and the parameters are
based on [1] and our previous papers [7], [8]:

(a1 + ang)C'é + asxi? + (71 + 72x2)m + Bz
= w?d cos(wt), (1)

where x is the horizontal displacement of the tip mass and
& is the corresponding velocity. The set of system parame-
ters considered in the above equations are a; =0.0294 kg,
as =1.1094 kg/m?, v, = —0.0633 N/m, o =53.8479 N/m?,
6 =0.01 kg/s, 6 =0.003 m kg. The physical meaning of these
parameters arises from a Galerkin approximation [1], [3], [7],
where the deflection model is assumed to be

Uly) =1—cos (7). @
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Fig. 1. Schematic plot of an inverted pendulum [8]. See Table 1 for
the description and parameter values used.

The system parameters which appear in Eq. (1) are defined
as [7]

ay = N2Io + M; + pANy,

g = pAN3 + M;N? + N2Io,

Y1 = EsIsNg — NopAg — NyM,g, 3)
Y2 = 2EIsNr,

0 = (pAN2 + My)yo.

where, after some lengthly mathematical manipulations ([1],
[31, [7], [8]), we obtain the constants N; to Ny as

N = [ swrn-i(-2),

v = [Cvw=teo,

v = ([ vwra) = e o),
= [Cwra=7
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TABLE I
SYSTEM PARAMETERS.

symbol and value description

L =0.2m length of the beam

m¢ = 0.038kg tip mass

p = 7850kg/m3 density of the beam mass

by, = 15mm beam width

hpy = 2.5mm beam thickness

A = byhy, = 0.000004m? cross section area of beam

E = 210GPa Young’s modulus
I=215x10"14m?* geometrical moment of inertia
Ip = 1144.4 x 10~2 kgm? | mass moment of inertia

y = yo cos(wt) kinematic displacement of the base

i
Ns =4¢'(L) = B €]
4
" i
No /w = o
" 2,1/ 2 7r6
Ny :/ (Y)Y’ (y) dl’:m7
8
N /I _ ™
s / VI W) e = paeere

= /0 /0 w’(dey)dx = %(72 —4),

where ¢’ (z) is the derivative d(x)/dx.

IIT. MELNIKOV APPROACH AND SIMULATION RESULTS
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Fig. 2. (a) Potential of the undisturbed Hamiltonian system. (b) Two
homoclinic trajectories (see the left and right sides of the saddle point
(:Bo, Uo) = (0, 0))

The Melnikov analysis predicts the conditions of escape
from a single potential well. In this method the excitation and
damping terms in the original system (Eq. (1)) are treated
as perturbations to the homoclinic orbits. The conditions for
the system to escape from the potential well, or the evidence
of fractalization of the basins of attraction, are signaled by
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Fig. 3. (a) Critical values of the ratio (6/3). (b), (c) Time histories

of the tip mass displacement for excitation frequencies w = 0.3 and
1.2 rad/s, respectively. (d) The phase portrait of the system response
for the excitation frequency w = 0.7. The black points in (b)-(d)
correspond to Poincaré stroboscopic points. The initial conditions
were (x(0),4(0))= (0,0).

the cross-sections of the stable and unstable manifolds [9].
Such a condition can be expressed in terms of the ratio of the
excitation amplitude to the damping coefficient (§//).

The Hamiltonian system is obtained in the limit §,3 — 0
as

(1 4+ ox®)d + agad?® + (y1 + o)z = 0. %)

For this system Fig. 2 shows the potential and homoclinic
orbits.

The critical value §/( has been estimated numerically and
plotted in Fig. 3(a). Figures 3(b) and (c) illustrate the system
evolution with changing w, as shown by the time series. Note
that Fig 3(b) represents a regular type of oscillation limited
to one of the potential wells, while Fig. 3(c) shows the non-
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periodic response of the examined system extending to both
potential wells. Fig. 3(d) shows the phase portrait for this
case which represents a chaotic attractor (the black points
correspond to the Poincare section). The dynamics of the
above system, where the potential barrier is overcome, could
be used to improve the performance of broadband energy
piezoelectric harvesters [7].

IV. BASINS OF ATTRACTION AND WADA REGIONS

In nonlinear systems the basins of attraction are defined
by subsets of the state space to which trajectories originating
from different initial conditions tend during time evolution. In
a double well Duffing-like system (Eq. (1)) we have, normally,
two attractors in each of the potential wells. The external
forcing creates a third basin of orbits which escape from the
potential wells.

In fact, for each such attractor, its basin of attraction is
the set of initial conditions leading to long-time behavior that
approaches that attractor. Thus the qualitative behavior of the
long-time motion of a given system can be fundamentally
different depending on which basin of attraction the initial
condition lies in (e.g., attractors can correspond to periodic,
quasi-periodic or chaotic behaviors of different types).

We decided to calculate the basin of attraction through
an algorithm that evaluates the distance, using a Euclidean
metric, between the long term behavior of the trajectories and
the attractor. In the case where we have multiple destinations
for the scattering trajectories, the structure of the basins can,
eventually, be more complicated and shows Wada properties
[10]. A basin exhibits the Wada property if any boundary
point also belongs to the boundary of two other basins.
More specifically, an open neighborhood of a point (xg,Zg)
belonging to a Wada basin has a non empty intersection with
at least three different basins. In this case the dynamics of the
system becomes even more unpredictable.

Using our dynamical system defined in Eq. (1) we per-
formed simulations and the results are presented in Fig. 4.
One can see that all the three attractors are forming a complex
Wada structure.

V. CONCLUSIONS

In this note we investigated the dynamical system of an
inverted pendulum-like beam with a tip mass excited horizon-
tally. In this system we investigated Melnikov chaos for fractal
borders between basins of attraction and stationary chaos with
typical strange attractors’ appearance. Finally we investigated
a creation of Wada patterns with complex mixtures of three
basins of attraction (see three colours in Fig. 4). The Wada
regions have a multifractal structure. As expected increasing
the excitation term, §, leads to a larger percentage of white
regions which (Fig. 4) indicates the escape phenomenon.
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Fig. 4. Basins of attraction for different system parameters w = 0.03,
6 = 0.003 (a); w = 0.8, 6 = 0.005 (b); w = 0.3, 6 = 0.008 (here
B = 0.01 for al cases) Red and blue colours indicate the basins for single
well oscillations while the white region is related to the escape phenomenon
(either regular or chaotic).

REFERENCES

[1] L.D. Zavodney, A.H. Nayfeh, “The nonlinear response of a slender bean
carrying lumped mass to a principal parametric excitation: theory and
experiment”, Int. J. Non-Linear Mech. 24, pp. 105-125, 1989.

[2] A. Nayfeh and P. Pai, Linear and Nonlinear Structural Mechanics, Wiley
Interscience, New Jersey 2004.

[3] E. Esmailzadeh, G. Nakhaie-Jazar, “Periodic behavior of a cantilever

115



G. Litak et al. * Nonlinear Oscillations of an Elastic Inverted Pendulum

[4

finr)

[5

—_

[6

—_

(7]

(8]

[91

beam with end mass subjected to harmonic base excitation”, textitInt.
J. Non-linear Mech., 33, pp. 567-577, 1998.

S.F. Ali and R. Padhi, "Active vibration suppression of non-linear beams
using optimal dynamic inversion”, PIMech.Eng. I-J. Sys. Contr. Eng.
223, pp. 657-672, 2009.

A. Erturk, D. Inman, Piezoelectric Energy Harvesting, Wiley, Chichester
2011.

L. Tang, Y. Yang, C.K. Soh, “Toward broadband vibration-based energy
harvesting”, J. Int. Mat. Syst. Struc. 21, 1867-1897 (2010).

M.I. Friswell, S.F. Ali, S. Adhikari, A.W. Lees, O. Bilgen, G. Litak,
“Nonlinear piezoelectric vibration energy harvesting from an inverted
cantilever beam with tip mass”, J. Int. Mat. Syst. Struc. 2012,
doi:10.1177/1045389X12455722.

M. Borowiec, G. Litak, M.I. Friswell, S.F. Ali, S. Adhikari, A.W. Lees,
and O. Bilgen, “Energy harvesing in piezoelastic systems driven by
random excitations”, Int. J. Struc. Stab. Dynamics 2012 in press.

L. Ruzziconi, G. Litak, S. Lenci, ”Nonlinear oscillations, transition to
chaos and escape in the duffing system with non-classical damping”,
Journal of Vibroengineering 13, pp. 22-38, 2011.

[10] J. Aguirre, J.C. Vallejo and, M.A.F. Sanjuan, "Wada basins and chaotic

invariant sets in the Henon-Heiles system”, Phys. Rev. E, 64, 066208,
2001.

116





