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In this paper we study the nonlinear response of the nonlinear mass-spring model with non-
smooth stiffness. For this purpose, we take as prototype model, a system that consist in the
double-well smooth potential with an additional spring component acting into the system only
for large enough displacement. We focus our study in the analysis of the homoclinic orbits for
such nonlinear potential for which we observe the appearance of chaotic motion in the presence
of damping effects and an external harmonic force, analyzing the crucial role of the linear spring
in the dynamics of our system. The results has been shown by using both the Melnikov analysis
and numerical simulations. We expect our work to have implications in problems concerning to
suspension of vehicles, among others.
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1. Introduction

There is a rich bibliography on the chaotic systems which are defined by a set of ordinary differential
equations including nonlinear but with smooth functions of displacement or velocity [Sprott, 2003]. The
non-smooth systems are very common in Engineering [Leine et al., 2000; Wiercigroch & de Kraker, 2000;
Radons & Neugebauer, 2004; Litak et al., 2007; Pavlovskaia & Wiercigroch , 2007] in which they have
relevant implications. In the present paper we examine the dynamics of the two stage mass-spring oscillator
as shown in Fig. 1.

In this system the two considered springs are connected in a parallel way. One of them has nonlinear
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Fig. 1. Schematic plot of the two stage spring-mass model. The effective exterior springs in the figure are assumed to have
the nonlinear characteristics, while interior, which introduces non-smoothness, has a linear characteristics. h denotes the tip
position of the spring free length with respect to the equilibrium point x = 0.

characteristics producing the double-well Duffing potential while the other is acting according to the
Hooke’s law, F = −kx, as shown in Fig. 1. Such connections of springs are often considered in practical
situations as in the suspension of vehicles [Verros et al., 2000; Von Wagner, 2004], among others. The main
goal of our paper is to analyze the effect of the linear spring on the two exterior nonlinear springs. We focus
our attention in the physical situations in which chaotic or periodic behavior takes place, depending on the
value of the different parameters of the system. The study of the bifurcation diagrams and the basins of
attraction elucidate the existence of new attractors into the system and the effect of the asymmetric term
we have added. Furthermore, they enlighten the bifurcations by which such attractors arise.

This paper is organized as follows. Section 2 presents a description of our model. In section 3 we solve
the corresponding differential equations and discuss the results. We use the Melnikov criterion [Melnikov,
1963; Guckenheimer & Holmes, 1983] to predict the existence of periodic solution. The critical force-
to-damping ratio is confirmed by the numerical simulations. As the examined system is an non-smooth
example, one has to modify the Melnikov formula by adding the extra terms related to the singular points
of non-smoothness [Kuntze & Küpper, 2001] (at these points the functions does not fulfill the C1 class
requirements). On the other hand, the numerical estimation of the integral can be done numerically. This
concept, used in previous works [Litak et al., 2008], is used in Sec. 4. After presenting the numerical results,
confirming the estimated critical parameters, the paper ends with conclusions and last remarks presented
in Sec. 5.

2. Model description

The model we take as prototype, according to Fig. 1, is given by the non-dimensional equation of motion:

ẍ + αẋ − ax + bx3 + k(x − h)Θ(x − h) = F sin(ωt), (1)

where α is the damping parameter, a and b are linear and cubic parts of the nonlinear spring and k is a
linear spring of defined length and a non-symmetrical contact loss. Θ(x) is the Heaviside step function,
F is the amplitude of a harmonic excitation and h is the the position of the tip of the spring free length
with respect to the equilibrium point x = 0. We can observe that if k = 0 we have the well known Duffing
oscillator [Duffing , 1918; Aguirre & Sanjuán, 2000; Baltanás et al., 2001], that is, the double-well potential.

The restoring force F (x) is defined by the potential V (x) (Fig. 2) as follows

F (x) = −∂V

∂x
= ax − bx3 − k(x − h)Θ(x − h), (2)

V (x) = −ax2

2
+

bx4

4
+

k(x − h)2Θ(x − h)

2
, (3)

where we have taken x0 + h′ = h with x0 = 1 and h′ = −0.1. From now on and without loss of generality,
we fix a = 1 and b = 1.
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Fig. 2. (Color online) Solid curve represents the Duffing symmetric potential V1(x) = −x
2

2 + x
4

4 and the present potential

with an additional spring V (x) = −x
2

2 + x
4

4 + k
(x−x0−h

′)2Θ(x−x0−h
′)

2 , for k = 1, is represented by the dotted curve. The
parameters x0 + h′ = h, x0 = 1 is the position of the right hand side stable equilibrium point, while h′ = −0.1 denotes the tip
position of the spring free length.
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Fig. 3. Numerical plots of both, trajectories (Fig. a and Fig. b) and Poincaré sections (Fig. a’ and Fig. b’), for the Duffing
oscillator case and for the non-smooth case with parameter values α = 0.15, F = 0.258, k = 0.2 and h = 0.3, respectively. We
observe the effect of the non-smooth term on the right side of the pictures: in presence of non-smoothness, both the trajectories
and the attractor look similar to the unperturbed ones, but their right side is slightly compressed.

Fig. 2 shows a plot of the profile of the potential for both cases, the Duffing oscillator and the Duffing
oscillator with the linear spring. We clearly observe the asymmetry (denoted by the dotted curve on the
right side of the figure) produced by the linear restoring force. Notice that the solid red curve represents
the symmetric double well potential.
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Fig. 4. Numerical bifurcation diagram of the Duffing oscillator in absence of the linear spring (α = 0.15). We observe periodic
regions and chaotic regions depending of the value of F . The onset of chaos takes place at F ≃ 0.257.

In order to understand better the behavior of our system, we show numerical plots of both, trajectories
in phase space and Poincaré sections. For this purpose, we have taken the following values of the parameters:
α = 0.15, ω = 1 and F = 0.258. Figs. 3(a) and 3(a’) represent both the typical chaotic trajectory and the
typical Poincaré section of the Duffing oscillator for the smooth case. Furthermore, we can see in Fig. 4
the bifurcation diagram of the x variable as a function of the forcing amplitude F , and we can see that
F = 0.258 is well into the chaotic region.

Figures 3(b) and 3(b’) show the same kind of plots for the non-smooth case for k = 0.2 and h = 0.3.
We can observe, in the right side (region in which x > 0) of Fig. 3(a’) and Fig. 3(b’), the effect of the
non-smooth term. Provided that the profile of the right well of the Duffing oscillator becomes steeper due
to the non-smooth term, we can see how both the right side of the trajectories and the attractor are slightly
compressed compared to the unperturbed case (Fig. 2).

In next section we provide, by using Melnikov analysis, theoretical arguments in order to show the
different regions of parameters in which the system is in a chaotic regime or in a periodic regime.

3. Melnikov analysis

In this section we use Melnikov analysis [Moon & Li, 1985; Baltanás et al., 2002; Almendral et al., 2004]
in order to provide analytical arguments of the different dynamical behaviors of our system.

According to the Melnikov analysis we assume that the force and damping parameter can be treated
as perturbations, so that we can rewrite:

F → ǫF̃ , α → ǫα̃. (4)

For our convenience and without any loss of generality in the results, we choose a = b = k = 1, for which
the equations of the system can be rewritten as follows:

ẋ = v, (5)

v̇ = x − x3 − (x − h)Θ(x − h) = ǫ(−α̃ẋ + F̃ sin(ωt)). (6)

Thus, the unperturbed Hamiltonian, i. e., in absence of both forcing and damping, reads:

H0 =
v2

2
− x2

2
+

x4

4
+ k

(x − h)2Θ(x − h)

2
. (7)

Looking for the homoclinic orbits in the Melnikov approach we obtain the left (for x ≤ 0) and right
(for x ≥ 0) hand side loops connecting the saddle point x = 0 and H0|x=0 = 0 by integrating out the
following expression:

dt

dx
=

1

v
=

1
√

2V (x)
. (8)
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Fig. 5. (Color online) The homoclinic orbit: red– for Duffing symmetric potential V1(a) = −x

2 + x
4

4 , blue– the right hand
side homoclinic orbit for the potential with an additional spring. The vertical line shows the switching point of the additional
spring potential x = h = x0 + h′ (x0 = 1, h′ = −0.1), and k = 1.
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Fig. 6. Displacement (a) and velocity (b) for the numerical obtained right hand side homoclinic loop for the potential with

additional spring (V = −x
2

2 + x
4

4 + k
(x−h)2Θ(x−h)

2 , with k = 1, h = 0.9).

Consequently, the integration of the equation above leads to

t − t0 =
1

√

x2 − x4

2
− k(x − h)2Θ(x − h)

. (9)

In case of the typical double-well potential and for the right hand side half-plane x < 0, we can easily
integrate the above expression to the analytic formula:

x∗(t) = ±
√

2

cosh(t − t0)
, v∗(t) = ±

√
2 tanh(t − t0)

cosh(t − t0)
. (10)

After adding perturbations, the homoclinic orbits split to the so called stable and unstable manifolds,
denoted by WS and WU , respectively. Existence of cross-sections between WS and WU manifolds signals
Smale’s horseshoe scenario of transition to chaos (see Fig. 7). Consequently, the distance d between the
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Fig. 7. A schematic picture of unperturbed (plotted with a dotted line) and perturbed homoclinic orbits (stable WS and
unstable WU manifolds plotted with full lines). d is the distance between Ws and Wu. x = 0 indicates the location of the
saddle point.

invariant manifolds can be estimated in terms of the Melnikov function since d ∼ M(t0):

M(t0) =

∫

∞

−∞

h0(x
∗, v∗) ∧ h1(x

∗, v∗)dt, (11)

where ∧ defines the wedge product (dx ∧ dv = −dx ∧ dv, dx ∧ dx = dv ∧ dv = 0). The corresponding
differential forms h0 means the gradient of the unperturbed Hamiltonian

h0 = (−x∗ + (x∗)3 + (x − h)Θ(x∗ − h))dx + v∗dv, (12)

while h1 is a perturbation form to the same Hamiltonian

h1 = (F̃ sin(ωt) − α̃v∗)dx. (13)

It is important that all differential forms in the above expressions are defined on the homoclinic orbits
(x, v) = (x∗, v∗). Thus the Melnikov function M(t0) reads:

M(t0) =

∫

∞

−∞

v∗(F̃ sin(ωt) − α̃v∗)dt. (14)

Thus a condition for a global homoclinic transition, corresponding to a horseshoe type, can be written
as:

∨

t0

M(t0) = 0 and
∂M(t0)

∂t0
6= 0. (15)

The above condition is valid [Guckenheimer & Holmes, 1983] for smooth potential belonging to the C2

class (V ∈ C2).
On the other hand, the nonsmooth case for k 6= 0 (Figs. 5 and 6) is difficult for analytic treatment but

the corresponding Melnikov criterion (Eqs. 11-15) could be found numerically. Note that in this situation
the potential is not smooth enough as it belongs to the C1 class functions. Thus according to Kunze and
Küpper [2001] there would be corrections related to the singular points of non-smoothness x = h. However,
the above corrections are more important for analytical and precise estimation of homoclinic bifurcation.
In our case, we solve the integral numerically, and our approximation will include Kunze and Küpper
corrections [2001] within the integration error. It should be noted that corrections are given, in some sense,
by averaging of the integral kernel in different limits x → h.

Finally, from Eqs. 14 and 15, the critical region of the ratio η = F̃ /α̃ = F/α as a function of ω can be
estimated as

η(ω) = min|I1/I2(ω)|, (16)

where integrals the I1 and I2 have the following forms

I1 =

∫

∞

−∞

(v∗(t))2dt and I2 =

∫

∞

−∞

v∗(t) sin(ωt + ωt0)dt (17)
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Fig. 8. (Color online) The critical curves η = F/α versus ω that separate the regular (below the curves) and chaotic (above
the curves) parameter regions for k = 1. Lines (a),(b),(c), and (d) correspond to different values of h, that is h = 0.3, 0.6, 0.9,
and h = 1.6, respectively.

The condition for the second potential well on the left hand side in Fig. 2 with a smooth heteroclinic orbit
(Fig. 5) can be expressed analytically as for the case k = 0. Introducing v∗(t) to Eq. 17 [Holmes , 1979;
Guckenheimer & Holmes, 1983] we integrate:

I1 =
4

3
, I2 =

√
2πω

cosh(πω/2)
sin(ωt0), (18)

and we choose the free integration parameter t0 in such a way that max| sin(ωt0)| = 1.
Finally, for the condition for the left side potential well (Fig. 2), η(ω) (Eq. 16) could be expressed

analytically as

η(ω) =
2
√

2

3πω
cosh(πω/2). (19)

The condition for the right hand side potential well (nonsmooth case) in Fig. 2 (for k > 0, h < 1.4)
has been calculated numerically. By changing the h we could see the effect of an additional spring on the
dynamics (Fig. 1). The results of the Melnikov analysis are presented in Fig. 8.

Here, we can see that the critical separation lines F/α versus ω are placed in non-monotonic order.
The main difference can be observed in the limit of larger ω. For fairly small h (h=0.3, Fig. 5, line (a))
the chaotic region is effectively shrinked while for the medium size h (h=0.9, Fig. 5, line (c)) the chaotic
region is extended. These results can be compared to the large h limit (Fig. 5 line (d)) which simultaneously
represent the initial Duffing potential without the influence of the additional asymmetric spring (for k = 0),
or the condition for the second potential well on the left hand side in Fig. 2. As our potential possesses
two wells the transition to chaos would be strongly dependent on the initial conditions where. For the
initial system state in the right side potential well (Fig. 2) the Melnikov criterion would be dependent on h
(Fig. 8), while for the system initial residence in the left potential well the analytic formula Eq. 19 would
apply.

Finally, we should note that the Melnikov criterion does not guarantee the steady state chaos appear-
ance but only the fractalisation of the boundaries of the corresponding basins of attraction for different
solutions which could result on time series as a transient chaotic motion.

In the next section we will show numerical simulations to clarify the situation of the asymmetric
non-smooth potential (for different k > 0 and h) by means of the corresponding basins of attraction and
bifurcation diagrams.



September 22, 2011 20:35 IJBC-D-10-00347

8 G. Litak, J.M. Seoane, S. Zambrano, and M.A.F. Sanjuán

-2 -1 0 1 2
X

-1

-0.5

0

0.5

1

Y

(a)

-2 -1 0 1 2
X

-1

-0.5

0

0.5

Y

(a’)

0.6 0.8 1 1.2 1.4
X

-0.5

0

0.5

Y

(b)

0.8 0.82 0.84 0.86 0.88 0.9 0.92
X

0.15

0.2

0.25

0.3

0.35

0.4

Y

(b’)

Fig. 9. Numerical plots of both, trajectories (Fig. a and Fig. b) and Poincaré sections (Fig. a’ and Fig. b’), for the non-smooth
case with parameter values k = 0.2 and h = 1 (Fig. a and Fig. a’), and for k = 0.7 and h = 1 (Fig. b and Fig. b’), respectively.
We clearly observe the strong effect of the linear spring in Figs. b and b’ in which the motion becomes periodic.

4. Numerical simulations

In this section we provide numerical evidence on the results shown previously. For this purpose, we solved
the examined set of equations by using the 4th order Runge-Kutta integration scheme [Burden & Faires,
1997]. Trajectories in phase space and their corresponding Poincaré sections resulting from these calcula-
tions are presented in Fig. 9. One can easily see the difference between the chaotic and regular solutions.
Figs. 9(a) and 9(a’) show a chaotic trajectory for h = 1 and k = 0.2. If we increase the value of k, say
k = 0.7, the influence of the linear spring becomes crucial since the chaotic motion disappears and it
becomes periodic falling into an attractor, as shown in Fig. 9(b’). It seems then that there is a critical
value of k for which a periodic attractor close to the right well of the system appears, making the orbits
become periodic.

Figures 10(a) and 10(b) provide a deeper insight on this phenomenon. In Fig. 10(a), a bifurcation
diagram of the system of x versus F with non-smoothness parameters k = 0.45 and h = 1, we can see
that for small forcing the system displays periodic behaviour, provided that the linear spring is a linear
system and it induces regular behaviors into the system. But as F is increased chaos arises in what seems
to be an inverse saddle-node bifurcation. Saddle-node bifurcations are widespread in dynamical systems,
for example it is the bifurcation that gives rise to the period-three window in the logistic map [Robinson,
2004]. In Fig. 10(b) we show the bifurcation diagram of the variable x versus k for h = 1 and F = 0.258.
We see that the system is chaotic until the value of k is too large and a periodic attractor arises in the
right well, so the pre-existing chaotic attractor disappears through a saddle-node bifurcation. An energetic
interpretation can be provided for this phenomenon: when adding the non-smooth stiffness, the system does
not change drastically its behaviour until k is sufficiently large, when an attractor arises that stabilizes the
orbit. After this, the system can be driven again to the chaotic state by increasing the forcing amplitude
F .

The bifurcation diagrams of x versus ω shown in Figs. 10(c) and 10(d) for k = 0 and for k = 1 and
h = 1, respectively, somehow support the previous considerations. We can see that when the system has
a non-smooth stiffness the system behaves periodically in a range of ω where there is chaos for k = 0.
However, as ω is increased (i.e., the frequency of the forcing gets sufficiently large) the system becomes
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Fig. 10. Numerical bifurcation diagrams of the variable x versus F for k = 0.45 and h = 1 (a), x versus k for F = 0.258 (b),
x versus ω for k = 0 and h = 0 (c) and x versus ω for k = 1 and h = 1 (d).
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Fig. 11. (Color online) Plots of the basins of attraction of our system for parameter values: F = 0.258, α = 0.15, ω = 1 and
h = 1. Fig. 11(a) corresponds with the Duffing oscillator without the linear spring. Fig. 11(b) represents the case in which
k = 1. Notice that the strange attractor plotted in green colour is destroyed and the dynamics of the system becomes regular.

chaotic and it behaves in a way qualitatively very similar to its behavior for k = 0, and this holds as ω
is increased. The transitions from periodicity to chaos as ω is increased, seems to occur again through an
inverse saddle-node bifurcation, similarly to what we observed by fixing k and increasing F . These two
situations share then a particular behavior: if the periodic forcing is sufficiently strong (either by increasing
F or ω) the influence of the non-smooth stiffness becomes negligible.

In order to have a better understanding of these results we have plotted the basins of attraction in
different situations. Figure 12(a) represents, for α = 0.15, ω = 1, h = 1 and F = 0.258, the typical basin of
attraction of the Duffing system [Aguirre & Sanjuán, 2000; Aguirre et al. , 2009] without the presence of
the linear spring. We observe in green color the typical strange attractor of this system. If we add the effect
of the non-smooth term, a complete erosion of the basins takes place as we suggested in Sec. 3. It should be
also noted that the Melnikov criterion indicate rather the appearance of the basin boundary destruction.
This effect can be visible in the Figs. 12 where we show the basins of attraction for three values in the
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Fig. 12. (Color online) Plots of the basins of attraction of our system for F = 0.258, F = 0.22 and F = 0.15, respectively.
Other parameter values are: ω = 1, k = 1, α = 0.15 and h = 0.3. Fig. 12(a) represents the case in which η = F

α
= 1.72 which

corresponds to the chaotic regime as shown in Fig. 8. Fig. 12(b) corresponds to the situation in which η = 0.8 and therefore
the transition between chaotic and periodic motions, as we suggest in Fig. 8. White color denotes the basin of attraction of the
new periodic attractor. Finally, the last figure represents the the case in which the basins become smooth and the dynamics
is completely regular.

vicinity of critical conditions that corroborate the results presented in Fig. 8. Fig. 12(a) represents the case
η = F

α
= 1.72 which corresponds to the chaotic regime shown in Fig. 8. The green curve shows the chaotic

attractor in phase space. Insofar we decrease the value of η, say η = 0.5 the motion becomes regular as
shown in Fig. 12(c). The transition between regular and chaotic motions is represented in Fig. 12(c). In
that picture a new periodic attractor appears (its basin is plotted in white color) as we suggest in the
bifurcation diagrams pictures.

5. Conclusions and discussion

Our results show that the non-smooth systems can be studied by the Melnikov criterion. Here, we propose
to rely on the numerical integration of the Melnikov integral. The advantage of our method is to use a
single formula to obtain the critical vale of the force-to-damping ratio. Furthermore, we investigated the
difference caused by the additional spring which is useful in problems related to suspension of vehicles. We
observed it in both analytical critical curve and also in the series of pictures showing both the bifurcation
diagrams and the basins of attraction evolution. In the analytical part we have shown the different regions
of parameters F , α and ω in which the dynamics is periodic or chaotic.

The numerical bifurcation diagrams elucidate us clearly the role of F , k and ω for which the onset
of the chaotic motions takes place. Besides, by analyzing the different numerical bifurcation diagrams we
conjecture both, the appearance and destruction of different attractors. This last result is corroborated by
analyzing the evolution of the basin of attraction for different values of η. The basins of attraction show
us, for values of η close to the critical points in which the dynamics changes from periodic to chaotic or
viceversa, these creations and destructions of the different attractors for which both the numerical and the
theoretical results are in complete agreement.

Finally, these results encourage us to apply the above approach to other systems with non-smoothness
including the clearance and dry friction phenomena which have important and relevant implications in
Engineering [Wiercigroch & de Kraker, 2000; Radons & Neugebauer, 2004].
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