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Abstract

Shape memory oscillators are thermomechanical hysteretic systems that, in a

wide range of model parameters, can exhibit complex non-periodic nonlinear dy-

namic responses under the excitation of a periodic force.

In this work the statistical 0-1 test based on the asymptotic properties of a Brow-

nian motion chain is applied to periodic and non-periodic isothermal trajectories,

to examine the type of motion.

The analysis is based on the computation of the control parameter K that ap-

proaches asymptotically 0 or 1 for regular and chaotic motions, respectively. The

presented approach is independent of the integration procedure, being based on the

characteristic sampling distance between the points of the analysed time series.

The numerical results show that the test is able to unambiguously distinguish

periodic from chaotic trajectories.
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1 Introduction
Shape memory materials have a broad range of tecnhological applications covering

various vibration problems like, for example, vibration isolation, reduction and attenu-
ation; passive seismic protection via base isolators and dissipative bracings, as well as
vibration actuators, thermally actuating switches and various types of sensors [1, 2].

The nonlinear dynamics of Shape Memory Oscillators (SMO) has been intensively
studied in recent years [3, 4, 6, 7, 8, 9, 10, 11, 12, 13]. Shape memory materials ex-
hibit a complex thermomechanical behavior and various approaches are possible for their
constitutive modeling [1, 2, 5]. The study of the nonlinear dynamics of Shape Memory
Oscillators has been undertaken essentially by means of two of them. On one hand, poly-
nomial constitutive models inspired to Falk model [2] have been used in several works,
like for example [3, 4, 11, 12]. This type of modeling has the advantage to permit a
direct use of all the standard tools of smooth nonlinear dynamics, whereas it provides a
simplified, indirect description of hysteresis at fixed constant temperature. On the other
hand, fully thermomechanical models based on one or more internal variables associated
with the fraction or the type of Martensite have been used in [6, 7, 13, 8]. This type of
modeling offers an explicit description of hysteresis, as well as of the prediction of the
temperature variations induced by the thermomechanical coupling, whereas it introduces
the complications associated with the non-smoothness of the governing equations.

The occurrence of non-regular chaotic responses in SMO described via thermomechan-
ical internal variable models has been observed and investigated not only with standard
Poincar maps and Fourier spectra but also with a nonstandard tool of wandering tra-
jectories [9, 10]. Note that, because of the increasing number of variables and system
nonsmoothness, the identification of chaotic solutions by the maximal Lyapunov expo-
nent becomes questionable. The present paper is continuation of the recent papers [9, 10]
that are based on the model for SMO discussed in [6], and it advocates an application of
the test 0-1 to distinguish regular and chaotic solutions [14].

2 Model and simulations
A SMO is a system composed of a main mass constrained by a Shape Memory Device

(SMD), namely a suitable assembly of Shape Memory Materials that provides a pseudoe-
lastic restoring force on the main structure (Fig. 1).

In general, SMDs are thermomechanical systems since the solid phase transforma-
tions occurring during mechanical loading involve the production/absorption of a certain
amount of heat and this induces temperature changes that, in turn, significantly affect
the mechanical response. As was shown in [6] a suitable constitutive framework for SMO
is obtained if at each time t the state of the oscillator is described, besides displacement
x (t) and velocity v (t), by an internal variable ξ (t) ∈ [0, 1] that models the internal state
of the SMD and by the temperature ϑ (t). In this work, as discussed below, the attention
is focused on the isothermal response. To this end a simplified version of the constitutive
model that describes a restoring force that exhibits isothermal pseudoelastic hysteresis
loops is considered.

In the general modelling framework of [6], the effect of pseudoelastic shape memory
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Figure 1: (a) Schematic picture of a SMO model and (b) an example of a SMD hysteretic
loop in the displacement-force plane.

devices on mass vibrations is considered within a thermomechanical environment charac-
terized by a harmonic force excitation F and a convective rate of heat exchange Q

F = γ cos αt, Q = h (ϑe − ϑ) , (1)

where γ and α are the excitation amplitude and frequency, ϑe the fixed environment
temperature and h the coefficient of convective exchange between the device and the
environment (Fig. 1).

Modelling the pseudoelastic restoring force as in Ref. [6, 7] and expressing all the quan-
tities in nondimensional form, the dynamics of the system is described by the following
equations

ẋ = v,

v̇ = −x + sgn (x) λξ − ζv + F,

ξ̇ = Z [sgn (x) v − JQ] ,

ϑ̇ = ZL

(

Λ

Jλ
+ ϑ

)

[sgn (x) v − JQ] + Q, (2)

where Λ is a constitutive function of ξ, ϑ whose explicit expression can be found in [6] and

Z =
1

λ + JLϑ +
L

λ
Λ +

1

λ

∂Λ

∂ξ

. (3)

All system parameters and symbols used in the paper are presented in Tab. 1
Overall the full thermomechanical model depends on 7 material parameters that can

be grouped as follows (see [8] for more details):

• mechanical parameters (q1, q2, q3, λ) that reflect the basic features of the device (type
and arrangement of the material) and determine the basic shape of the pseudoelastic
loop observed in isothermal conditions;

• thermal parameters (L, h) that reflect the heat production, absorption and exchange
with the environment and therefore determine the temperature variations of the
device;
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• a thermo-mechanical parameter J that determines the influence of the temperature
variations on the pseudoelastic loops.

While temperature variations are very important in certain circumstances, as shown
in Ref. [7], some of the aspects of the nonlinear dynamics of SMO can be appreciated
even in a simplified setting in which temperature variations are neglected and therefore
the response is assumed to be isothermal.

Taking this into account, henceforth the nonlinear dynamics of SMO will be studied
under the constraint that ϑ̇ = 0. This implies the thermal equilibrium of the SMD with
environment ϑ = ϑc. The fully non-isothermal response will be investigated in further
works. In such conditions the SMD is characterized simply by the 4 mechanical parameters
(q1, q2, q3, λ).

In order to test the applicability of the 0-1 test to detect chaotic responses, two tra-
jectories are studied. The first one, called (a), exhibits regular-like behaviour while the
second one, called (b), exhibits non-regular-like (or chaotic) behaviour (see Tab. 2).

The system has been integrated numerically over a time interval of 50000 excitation
periods each contained 1000 points and then sampled that a rate of 4 points per the
excitation period. This sampling constraint is related to the estimation of a minimum
time lag by the Average Mutual Information criterion [15]. For a harmonic signal this
time lag is equal to one quarter of the period [16]. The simulated time series are plotted
in Figs. 2 a,b. Even at a first sight the two trajectories strongly differ by regularity.
While Fig. 2a shows vibrations with constant amplitude, Fig. 2b exhibits non-regular
oscillations with a fluctuating amplitude.
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Figure 2: Sampled displacement points xi for two characteristic solutions (a)-regular and
(b)-chaotic.

More hints about the dynamics of the system can be obtained by viewing the phase
portraits where the difference between the regular and chaotic behaviour is clearly visible
(Figs. 3a,b). In Fig. 3a, one can see a closed loop curve typical for a periodic system
response while in Fig. 3b the lines form a complicated structure typical for a chaotic
response. Additionally, the map obtained stroboscopically with one quarter of excitation
period (Poincare-like-section) distinguishes the singular points (Fig. 3a) from a broad
fractal-like distribution (Fig. 3b).
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Table 1: List of parameters used in the paper

symbol parameter

t time
x(t) displacement

xi, i=1,2,3,... sampled displacement points
x , σx average value and standard deviation of displacement

M(n, c) total mean square displacement in new coordinates
for n steps corresponding to sampled points

N length of the sampled points in the displacement time series
v(t) velocity

p(i), q(i) new coordinates obtained by nonlinear transformation
F harmonic force excitation
γ excitation amplitude
α excitation frequency
Q rate of heat exchange
ϑe fixed environment temperature
ϑ device temperature
h coefficient of convective exchange

between the device and the environment
ξ ∈ [0, 1] internal variable of Martensite fraction

(pure Austenite ξ = 0, pure Martensite ξ = 1)
ξ0 initial state of ξ variable
λ denotes the transformation displacement factor

maximum displacement that can be obtained by completely
transforming the material from Austenite to Martensite

Λ constitutive function of ξ and ϑ

sgn(.) sign function
q1, q2, q3 parameters responsible for modelling of a hysteretic loop,

which control the slope of the upper loop plateau,
position and slope of the lower loop plateau, respectively

J ,Z thermo-mechanical parameters
Kc and current (c dependent) parameter of the 0-1 test

K̃ and its median average over 100 of c values.

The power spectra of the two time series are presented in Fig. 4 where the regular
solution (Fig. 4a) shows 3 peaks representing the excitation frequency α and its consecu-
tive odd multiple harmonics. On the other hand, the chaotic-like solution (Fig. 4b) apart
of these, one can see a broadly distributed frequency band (0, 7α). While the analysis of
the results shown in figures 3b and 4b could be already considered as a qualitative indi-
cation of chaotic vibration, in the next section a quantitative indication will be obtained
by parametrizing the time series with a single number K̃ which can approach the values
0 or 1 depending on the motion regularity.
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Table 2: Summary of system parameters used in simulations for time series a (regular-like
response) and b (non-regular-like response), respectively.

model parameters excitation parameters

Time series λ q1 q2 q3 γ α

(a) 8.125 0.98 1.2 1.017 1.0 0.400
(b) 8.125 0.98 1.2 1.017 1.0 0.227

(a)
−15 −10 −5 0 5 10 15

−5

−4

−3

−2

−1

0

1

2

3

4

5

x

dx
/d

t

(b)
−15 −10 −5 0 5 10 15

−4

−3

−2

−1

0

1

2

3

4

x

dx
/d

t

Figure 3: The phase portraits in (x, ẋ) with 4 points per period for two characteristic
solutions (a)-regular and (b)-chaotic.
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Figure 4: Power spectrum of the x coordinate for (a)-regular and (b)-chaotic solution
expressed in the units of excitation frequency α.

3 Application of the test 0-1
The 0-1 test, proposed by Gottwald and Melbourne [14, 17] can be applied to any

dynamical system of finite dimension to distinguish chaotic trajectories from regular ones.
The method is based on the statistical properties of a single coordinate and, like spectral
measures, is based on some universal properties of the dynamical system.

Starting from the displacement coordinate x(i) of the sampled map (it could be any
coordinate with defined sampling) the new coordinates p(i) and q(i) can be defined [15,
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Figure 5: Phase portraits in new variables (p, q) for i ∈ [1, Nmax], Nmax = 2000 and
c = 1.0. (a) and (b) show the system evolution for regular and chaotic solutions.

16, 14, 17] as

p(i) =
i

∑

j=0

(xj − x)

σx

cos(jc), q(i) =
i

∑

j=0

(xj − x)

σx

sin(jc), (4)

where c ∈ (0, π) is a fixed frequency chosen arbitrarily, q(i) is a complementary coordinate
in the two dimensional space, and x is an average of xi series. Note that starting from the
bounded coordinate x(i) one builds new series of p(i) and q(i) which can be either bounded
or unbounded depending on dynamics of the examined process. In the following, x and
σx denote respectively the mean value and square deviation of the examined xi series.

In this way any chaotic vibration in the initial space x corresponds to an unbounded
motion in (p, q) plane while a regular vibration (in the space x) is related to a bounded
motion in the (p, q) plane. To obtain a quantitative description of the examined solution,
the method computes the asymptotic properties of the trajectory in the new plane, by
means of the total mean square displacement

M(n, c) = lim
N→∞

1

N

N
∑

j=1

[

(p(j + n) − p(j))2 + (q(j + n) − q(j))2
]

. (5)

The asymptotic behaviour of M(n, c) with growing n is strong only for some resonance
frequency c (see the definitions of variables p,q in Eq. 4). To this end, in Ref. [18] the
problems of averaging over c as well as sampling the data points are discussed extensively.
The present investigation follows this approach as well as more recent papers by Krese
and Govekar [19] and Litak et al. [20], which improve the convergence of the 0-1 test
without the consideration of longer time series.

Consequently, the regression analysis [18, 19, 20] of the linear growth of M(n, c) (Eq.
6) with increasing n is performed using the linear correlation coefficient which determines
the value of the searching parameter Kc.

Kc =
cov(X,M(c))

√

var(X)var(M(c))
, (6)

where vectors X=[1, 2, ..., nmax], and M(c)= [M(1, c), M(2, c), ...., M(nmax, c)].
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The covariance cov(x,y) and variance var(x), for arbitrary vectors x and y of nmax

elements, are defined as follows:

cov(x,y) =
1

nmax

nmax
∑

n=1

(xn − x)(yn − y),

var(x) = cov(x,x). (7)

Finally, the median is taken of Kc-values (Eq. 9) corresponding to 100 different,
systematically chosen values of c ∈ (0, π).

In practical applications [18, 19, 20] the infinite limits is terminated to Nmax and nmax,
respectively (nmax < Nmax). In the current calculations Nmax=2000 and nmax=200 were
assumed. For the fixed value c = 1.0, Fig. 4 shows the phase portrait in the p − q plane
for regular (a) and chaotic (b) solutions. It is to remark that Fig. 4a indicates bounded
while Fig. 4b unbounded ”walk” (see also the difference in scale).

To exclude the influence of the resonance frequency c, the final results as the median K̃

were chosen from all Kc calculated for a hundred values of c chosen systematically from the
interval [0, π]. In this case, the median values of K̃ = −0.008 ≈ 0.0 and K = 0.88 ≈ 1.0
were estimated for regular and chaotic cases, respectively.

4 Summary and conclusions
A quantitative analysis of the regularity of the dynamical solutions of a shape memory

alloy oscillator in isothermal conditions has been carried out by means of the 0-1 test.
The results show that regular and chaotic responses can be easily distinguished by the
method. The presented approach gives a quantitative criterion for chaos similar to the
maximum Lyapunov exponent, which estimation faces some difficulties when it comes to
non-continuous and hysteretic systems [21]. In this context, the 0-1 test is very useful.
Other advantages include a low computational effort and the possibility of its application
in real time.

As demonstrated by Falconer et al. [18] the method can be also used to experimental
data. Furthermore, it has been also shown that the 0-1 test could be applied to dynamical
systems with additive noise and a good signal to noise ratio [17].
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