Failure Diagnosis of a Gear Box by Recurrences
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ABSTRACT

The recurrence analysis method is used in the mechanigialés of a gear transmission system using time
domain data. The recurrence is a natural behavior of a genndtion system, which tells the state of the system,
after running some time, will approach to a certain pasestatthis paper, some statistical parameters of recurrence
qualification analysis are extensively evaluated for treeafsmechanical diagnosis, based on fairly short accelera-
tion time series; recurrence results are compared withetbbgined from Fourier analysis, and the identification
procedures for the failure gear transmission by recurieiscalso presented. It is found that, only using fairly short
time series, some statistical parameters in quantificagoarrence analysis can give clear-cut distinction betwee
health- and damage-state.

*Address all correspondence for other issues to this author.



Nomenclature

Xi,Xj Vector representation of the system states in discreteitime

€ Threshold value.

RR, LAM, DET, L, TT

VENTR, LENTR Parameters defined in the Recurrence Qualification Analysis

y Average value of parametgr

oy Standard deviation of parameter

Kurty Kurtosis of parametey.

Ri,j Recurrence matrix.

P(l), P(v) Histograms of the line diagonal and vertical lengthar(dv, respectively).

p(l), p(v) Normalized probability distributions of the line diagoraid vertical lengthd @ndv, respectively).
PS Power spectrum.

O(x) Heaviside step function.

H1,H2 Signals corresponding to healthy gears measuredrisps®&lo. 1 and 2, respectively.
D1,D2 Signals corresponding to damaged gears measuredggrdgo. 1 and 2, respectively.
n Number which indicate the rotation interval.

1 Introduction

Gear transmission systems are widely used in real life tzecatitheir reliability and possibility of long time operati
[1-5]. Due to backlash and time-varying mesh stiffness #i@y complex nonlinear response [6] such as chaotic vibsati
[7]. Additionally, transmission errors can occur due towsar phenomena and disturb the efficient work [8—10]. Opmral
safety requires to detect those defects before admitteggaimsmission system for a longer operation. The goal girtesent
note is to compare dynamics of the faulty transmission tchdredthy one using nonlinear time series method of recuerenc
plots. For testing purposes, we used a single-stage traggmigears pair with angular teeth mounted on an indussal
stand [11]. This kind of gears is widely used in aircraft intty, e.g. to transmit power into the tail rotor in helicaste

In the present paper, instead of using a standard frequeratysis [12], we calculate recurrence indicators fromlyair
short experimental time series of acceleration measurdiffarent stages of the dynamical experiment. Finallyureence
indicators are used to assess the gear usability and/cadkegrn. We assume that the faults occurred in the systeatinte
strongly nonlinear phenomena like friction and/or badkltgat can influence the stability of the whole system. Todear
and identify such disturbing effects in the system dynahresponse, we used a recurrence quantification analysiaRQ
which gives reliable indicators for system technical ctiodis [13—15].

2 Recurrence quantification analysis

Recurrence is a natural behaviour of the periodic motionnmfter some time the actual state of the systemis close to a
certain past state. L&t denote a state of a dynamical system at discrete time. Siyilet x; denote a different state of the
examined system. Consequently, a recurrence phenomeiptinsrthose states to be close to each other (after some time)
what can be written as:

Ixi —xj| <€, for i#j. Q)
This fact can be described in logical values (0 or 1) using¢icerrrence matrix:
Ri,j(s):e(E—HXi—XjH), for iaj:17"7n7 (2)

wherel|.|| is the Euclidean measure, a@dx) is the Heaviside step function.

The results of the recurrence function (Eq. 2) that acts ertridjectory of the length can be represented asix n
matrix made of zeros and ones where rows and columns are dhaska discrete time. Its graphical representation of that
matrix (coloured pointsi, j) for R j(€) =1, and empty place§, j) for R j(¢) = 0) is called a Recurrence Plot (RP) [16,17].
Note that every recurrence plot includes a single point. étecurrences can be reflected into RP as vertical, horizonta
lines or singular points. The points in RP can also form sothergatterns possessing elements of vertical, horiztines.
Thus, one can distinguish different kinds of motion justireecurrence plot topology.

However, a more specific investigation based on the statisfi points and lines forming the plot can be made (RQA
- Recurrence Quantification Analysis) [17-20]. The RQA ues a few measures based on horizontal and vertical line
patterns in terms of the statistical properties of line taegand their distributions. Note, the diagonal lines repnt the



periodic motion, while the isolated point reports a singleurrence that could appear by incidental passing thrdwghame
state in the phase space.
Recurrence ratBR:

RR= > Y Rj(e), 3)

is the ratio of the recurrence points to all possible points.
DeterminismDET:

51 P(1)
DET = & mn_— = 4
ST IP()
shows the contribution of points forming diagonal linB¢l) is a histogram of diagonal lines of lendth
Laminarity LAM:
. VP(v
LAM = M (5)

Su—1VP(V)

shows the contribution of points forming vertical lin€Xv) is a histogram of vertical lines of lengthDET andLAM show
how many recurrence points are included in various diagandlvertical lines. The first one (DET) used to characterize
how periodic is the system dynamical response while thergk@oAM) identifies small (laminar) changes in recurrences
by calculating the ratio of small deviations in the recuoento all recurence points. Interestingly, small deviein
recurrences are represented by vertical lines in RP.

The average length of diagonal lines

mo Pl
L ZIEImn 0) (6)
21t P()
can reflect the time correlation of time series, which istegldo the average time of a periodic motion.
The average length of vertical lines called trapping tifife
11— T, VPV @

z\?:vmin P(V)

is a similar indicator td_ but defined for vertical lines, which can tell about the chtgastic time of a laminar motion. The
Shannon entropy for diagonal linkgq;:

n

LENTR= — Dinp(l), 8
I}mmp()np() (8)

wherep(l) is probability of finding a diagonal line of length
The Shannon entropy for vertical linggy; :

VENTR= — i p(v)Inp(v), 9

V=Vmin

wherep(v) is probability of finding a vertical line of lengti. Note, the parametetsENTR andVENT are particularly
sensitive to noise.

The maximum length of diagonal and vertical line& MAX andVMAX, respectively.

These quantities, or more precisely changes of their vdluéise system conditions, illustrate the dynamics of the
underlying system. E.dOET in a periodic system (long diagonal lines and few single {)itakes a higher value than in a
stochastic system (only single points). Note that the comesults of the RQA depend on proper choice of the embedding
parameters (embedding dimension and embedding time délasthermore, a subspace of all measured coordinates can be
used.



3 The experimental set-up and results

We have tested single-stage transmission gears with aniggdth. The scheme of the gears and the location of the
acceleration sensors are shown in Fig. 1.

The gears were dismounted and examined carefully aftegbeinperation for a long time. It appeared that the gear
system had been damaged, therefore the transmission systemeplaced by a new (healthy) one and run again. We have
recorded the vibration of acceleration in three directipng z) with a sampling frequency of 40 kHz for both damaged and
healthy systems.

The damage of the transmission occurred after 3 hours andriLies of the gear system work. The stop signal was due
to the presence of a chips sensor. There has been a blurfétg éfie to the incorrect assembly of gears. The acceleratio
data was recorded regularly since the beginning of trarssamigo the occurrence of the damage.

More detailed analysis of the dismounted gears providetkeene that the lateral surface of the teeth had been damaged.
The transmission system was replaced by the new (healtleyuod run again. The pinion had 19 teeth and was rotating with
speed of 6196 rpm, and the driven wheel had 42 teeth. The dasists of 160 revolutions of the pinion, which correspond
to 61960 points of the system evolution and a run time of 1&knds. For the purpose of our analysis we divided the
whole period into 10 rotation intervals, each of 16 revalns.

In this project we compare the system response recordseotfiom two piezoelectric triaxial sensors. To obtain more
information, than from the Fourier analysis, we apply thethod of recurrence plots. Initial results related to thisrge
system have been recently reported by Jestii at al. [11] who used frequency domain analysis. He étlehe measured
signal to find differences between the healthy and faultysingission gears. In the present approach, instead of using a
filtering algorithm, we propose to use the simultaneoustpreed data from 3 directions. The obtained data form veabr
the phase space.

Thus, we focus on comparison of the two different time sefoegaulty and healthy gears, recorded with a single 3d
sensor ( No. 1 in Fig. 1). As expected, the sensor No. 2 (Figgate similar results (see Tab. 1). The corresponding
time series for the healthy and damaged gears are presenfégl i2. Note that the wider distribution of measured points
is clearly visible for the faulty gear pair (Fig. 2b). In Tab.one can compare Basic statistical parameters includirapme
values, standard deviation and kurtosis used for all 3 tioes, i.e.x, y, andz are compared in Tab. 1.

Comparing the statistics obtained, higher mean valuesdceleration of healthy gears inandz direction (H1) can
be noted. On the other hand, the standard deviation of aetiele in the same direction is higher for the signal D1 of the
damaged gears. The time series obtained from the seconor d®isve in a similar way (almost all statistic parameters
take higher values for signal D2). Interestingly, kurtasislearly larger for the damaged systems (Kyr8, i = x,y,2) as
compared to the healthy ones (Ku@ 3 wherei = x,y,2). All estimated kurtosis values are relatively close ta tiathe
Gaussian distribution (Kuet 3). However, their small systematic variation indicatesaayiurtic distribution of measured
points ( flatter than the Gaussian) for the damaged systeitg thle healthy system shows a leptokurtic density (mord&yea
distribution). Note that the Gaussian process can be agsdcivith the presence of random external force and/or ¢éorqu
disturbances. The change in kurtosis indicates the additmorrelated effect of internal forces in the gear systéne large
increase can detect intermittency [21].

To make further progress with the recurrence analysis thegjponding time series have been normalized properly to
their standard deviations.

4 The RQA results and discussion

This section reports the results of RQA for time series desuy magnitudes of gears system acceleration with damaged
and healthy transmission gears. In the search for diffe®hetween the considered systems we performed the RQAsenaly
for 10 consecutive rotation intervals. For each periodjmemnce quantifiers defined in the previous section with sseimed
critical distance (threshold value)= 0.5 and minimal length of a diagonal and vertical line equal twete calculated.
Instead of the embedding space estimation [22, 23] we usedim@&nsional space spanned on the 3 axial acceleration
signals k,y,2).

Using the experimental data, RQA measures were calculatdidtinguish between healthy and damaged gears (Figs.
3-13). RRvalues for different revolutions and two sensors are coetpar Fig. 3.

As depicted in Fig. 3RR takes similar values. Careful inspection shows that a gjighider range ofRR (RR €
[0.00940.0170) and simultaneously the mean value are related to the lyegétars (sedRR € [0.01040.0124 for the
damaged gears). Consequently, our main conclusion basewjo is that the recurrences occur at the similar level, but
their distribution can be different.

The examples of the recurrence plots for one chosen rotatierval (No. 8) are given in Fig. 4. Note th&R is the
same here (see Fig. 3a) for sensor No. 1 and fairly similasémisor No. 2 (see Fig. 3b). The vertical scales are different
in Fig. 3a and b. This coincidence (Fig. 3a) makes plaush®ecbmparison of the statistics of the diagonal and vertical
lines for both gear systems, i.e. healthy and damaged. NathelsamérR implies the same number of recurrence points



for different dynamical responses reflected in differeritgzas in Fig. 4. ThdRR matrix for the damaged gear signal looks
more reddish because of the resolution (with the same nuafliecurrence points).

Interestingly, the transition from a healthy to a damagesiesy is associated with different vertical line structures
The apparent evolution from a more like checkerboard argetesquare patterns (Fig. 4b) into a collection of verticad a
horizontal short lines (Fig. 4a) resembles the intermdyainansition discussed by Klimaszewska atebrowski [24]. The
larger difference o T in the two examined cases (healthy and damaged) shouldedlsotrthe effect.

Fig. 5 shows the selected RQA paramet&R,(DET, LAM, LENTR, VENTR, andTT) versus the threshold valige
for case No. 8 of the same healthy and damaged gear signaisedthfrom sensor No. 1 (see Fig. 3a). There are visible
corresponding lines splitting in the region of smaafbr DET, LAM, andVENTR. SimultaneouslyRR lines are very close
(Fig. 5a).TT lines (Fig. 5f) are also split but for fairly larger while LENTR lines (Fig. 5d) are fairly close in the whole
region, making a noticeable difference in order of altimdENT R(healty) > LENTR(damagedl — LENTR(damaged <
LENTR(healty) for a large enough (€ ~ 4.1).

The corresponding recurence plots for RQA parameters atmfull time history consisting of 10 rotation intervals.
can be found in the next figures (Figs. 6-12). The threshdlgeveawas fixed as in Fig. 3¢(= 0.5). Note that the equé&R
values determine equal number of recurrence points fottheahd damaged gears and make the RQA measures possible to
compare.

DET versus consecutive revolution is shown in Fig. 6. ObviguslgDET parameter corresponds to the predictability
of the process. It is higher for both H1 and H2 but a more sicguifi change can be noted for D1 and H1 (H1 almost twice
higher than D1). Another indicator, corresponds to regiylaf the process is i.d.MAX (Fig. 7).

Thus,LMAX varies for the healthy gears (H1 and H2) whereas it is flatetife damaged ones (D1 and D2) but it
takes twice higher values, especially for data recordedhéyitst sensor. On the other hand, those values are quitéasnal
compared to the length of the whole data (6196 points). Thgithmdicate the influence of noise or non periodic behaviou

Mean length of the diagonal line is shown in Fig. 8. ComparisbthelL values shows differences for the healthy gear
for D1 and H1 (Fig. 8a - sensor No.1). Clearly, indicatorsokdted for the second sensor (Fig. 8b - sensor No. 2) are
different (D2 and H2). Those lengths are quite small, whictypical for non periodic or/and intermittent dynamics,[25].

Clear distinction of signals for each sensors can be alsodfau the values of entropy of the diagonal lines (Fig. 9).
Interestingly, the results are different again for sensor Nand 2 like the results @fin Fig. 9.

The above inconsistency needs to be clarified. The expe&ekase of. and even more evidentlyENTR in the
damaged systems is related to the ordering effect of theasang nonlinearity (as noted for the sensor No. 1 — Fig9da,
However, this explanation is only valid in the limit of smaNvhich is not reached. This means that, in our systea0.5 is
not small. FurthermorBR, is fluctuating more in sensor No. 2, which can also causedif§i estimating other parameters.

More clues about the stability of the power transmissionaglyical process can be found in the values of indicators
based on statistics of the vertical lines (Figs. 10-12). iRstance, Fig. 10 specifies the vertical line distributidrhe
appearance of vertical lines (Fig. 4) gives some infornmagibout fairly small variations of recurrence intervals véaes
isolated points indicate the large changes. By meah#\bf one can see the clear distinction between healthy and damage
system. Thusl.AM for a damaged system is smaller which is again the orderiiegtedf the defect caused by increased
nonlinearity.

The following parameter¢ MAX (Fig. 11) andT T are also larger for a damaged system. The effect is mordeviib
sensor No. 1 (Fig. 11a and 12a). Interestingly, for sensor2N@-ig. 11b and 12b) the tendency is opposite, in particular
for rotation interval No. 7 as the percentage of recurreridealthy system was smaller for the damaged gear systera. Thi
implies the role oRR parameter variation which is more significant for sensor Ao.

Finally, VENTR versus consecutive rotation intervals, plotted in Fig.dehaves in a similar way (as compared to that
of VMAX andTT - Figs. 11 and 12) with the higher values for the healthy sysfEhe same is for rotation interval No. 7
(for sensor No. 2 — Fig. 12b could be related to disturbant&Ri(Fig. 3b).

To exclude various fluctuations, we calculated the averafjal examined QRA parameters (for 10 rotation intervals)
which are given in Tab. 2.

There is a clear difference betweBET, LMAX, LAM, andVMAX which confirms the previous particular revolution
analysis. This means that, the averaging canceled sonmeadhte-interval fluctuations.

Our results show clearly that the RQA statistics can be ugatistinguish between a healthy system of gears and a
damaged gear system. The analysis of results should begmtfre estimation oRR which is an important parameter and
should be used to normalize the results obtained and coestygto compare different time series by the proper chofce o
€ (in our cases was selected better for sensor No. 1 than sensor No. 2). wtds, any other RQA parameters can be
estimated. Most significant differences can be found in tiaes ofDET andLAM which were always higher for healthy
gears.

In fact the common procedure in an experimental data amsaigdbased on frequency domain. Comparing a hight
frequency limit one can see power spectrum (Fig. 14) for serges of sensor No. 1 and the rotation interval No. 8 in all 3
directions &, y, andz).




Based on power spectra fplandz direction one can see peaks with higher amplitude and frexyuler damaged gear
can be noted. The corresponding values of peaks are mucértifgdin the shaft speed (103 Hz).

That indicates harmonics at high frequency in the damageddilinealthy gear system. Obviously, one can see there is
a frequency shift for higher frequencies of the damagecdesysesponse appearing in all directions (Figs 14a—c). $amul
neously, power spectra for the gear vibrations are withiaraawer range in the presence of defects. This effect is gt m
transparent irz direction (Fig. 14c). The shift of the peaks and the corrasgjptg frequency band shrinking are the effects
which accompany defects. In the recurrence approach weatarethe ordering of oscillations which slightly changenfr
interval to interval.

5 Summary and conclusions

In summary, we have applied the nonlinear recurrence bastboeh analysis to experimental data taken from the
aviation power transmission. Analysis of experimentabdatdifficult, mainly due to influence of additional noise ttha
can distort the results [26]. To distinguish a healthy gemngmission from a damaged one, the recurrence indicaters a
used. Applying the RQA allows for detecting systematicatifihces in the values BEET andLAM, assumed as quantifiers.
Interestingly, the effect is also noted in Kurtosis (Tah. We have also noticed that results may slightly vary withnzies
of the parameters valuek,(LMAX, LENTR, TT, VMAX, VENTR) due to a sensor selected. Such a choice implies more
implies more careful fixing the value efin order to minimize the variations &R. The averaging procedure applied to the
RQA parameters over 10 rotation intervals has helped toetdneir fluctuations (Tab. 2).

Additionally, the examined data indicate stationary vilnas as there are no jumps in recurrences ratios or statisti
indicators.

To conclude, the new method of monitoring a gear system @merended for an industrial environment. The advantage
of the recurrence approach is that only two paramd®@and DET identifying a defect instead of observing the whole
frequency spectrum of the Fourier analysis in each inteitalvever, more systematic experiments with differentshodd
valuesg, as well as various kinds of gear defects should be doned#ierimplementation of this method to the industry.
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Table 1. Statistic properties of time series. The signal D1 stands for acceleration of the faulty gear recorded by the first sensor, H1 -
acceleration of the healthy gear; the signals D2 and H2 - obtained from the second sensor.

Signal x y z Oy Oy o, Kurty Kurty Kurt,
[m/is?] [m/s?] [m/s?] [m/s?]  [mis?]  [mis?]

D1 0.119 0.458 0.547 108.25 107.30 99.82 2929 2575 2.879

H1 0.111 0.139 0.198 11354 201.88 210.91 3.109 3.061 3.164

D2 0.557 0.153 0.157 138.17 127.17 108.36 3.032 2.954 2913

H2 0.217 0.192 0.464 197.66 16155 214.48 3.214 3.195 3.162




Table 2. Average values of RQA for all presented revolutions Nos. 1-10 with € = 0.5. The signal D1 stands for acceleration of the faulty
gear recorded by the first sensor, H1 - acceleration of the healthy gear; the signals D2 and H2 - obtained from the second sensor.

Signal RR DET LMAX L LENTR LAM VMAX TT VENTR

D1 0.029 0.345 224 24 0.853 0.528 10.9 2.4 0.859
H1 0.032 0.571 449 26 1.076 0.742 17.0 2.8 1.280
D2 0.033 0.371 28.0 2.5 0.958 0.553 13.9 25 0.984
H2 0.035 0.482 394 25 0.929 0.675 16.7 26 1.133




Driven wheel

@)

(b)
Fig. 1. (a) Location of the sensors on the shaft where 1 and 2 stand for first and second sensor, respectively [11]. (b) 3D schematic view of
a gear system.
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different gear systems: healthy (green dashed lines) and damaged (red full lines), respectively. The embedding space consists of X, Y, and Z
acceleration components.
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(color online) Determinism DET for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears

calculated with € = 0.5.
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Fig. 7. (color online) LMAX for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears calculated

with € = 0.5.
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Fig. 8. (color online) L for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears calculated with
£=0.5
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Fig. 9. (color online) LENT R for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears calculated
with € = 0.5.
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Fig. 10. (color online) Laminarity LAM for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears

calculated with € = 0.5.
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Fig. 11. (color online) VMAX for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears calculated

with € = 0.5.
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Fig. 12. (color online) Trapping time T T for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears
calculated with € = 0.5.
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Fig. 13. (color online) VENT Rfor healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears calculated
with € = 0.5.
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Fig. 14. (color online) Power spectra for the revolution No. 8 estimated for X acceleration (a), Y acceleration (b), Z acceleration (c) for the
healthy (green) and damaged (red) transmission gears. Note that the damaged system spectra have more localized and larger frequencies.




