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Vibrations of a self-excited oscillator under parametric excitation with nonlinear stiffness were
investigated in this paper. Differential equation of motion includes van der Pol, Mathieu and
Duffing terms. Vibrations synchronization, stability of solutions were examined by means of
the multiple time scale method and Floquet theory. Chaotic solutions were found by means of
Lyapunov exponent.

1. Introduction

In mechanical vibrations, we can distinguish a
rather broad class of the self-excited systems
with simultaneous parametric excitation [Szabelski,
1991]. In nonlinear systems there exists mutual
interaction between these two types of vibrations
which breaks the superposition rule. Numerous sci-
entific monographs are concerned with the prob-
lems of synchronization (entrainment of frequency)
in the self-excited system with parametric and ex-
ternal excitations [Szabelski & Warmiński, 1995a,
1995b]. The aim of this work is to analyze of the
effects of interaction between self-excited and para-
metric vibrations of the main resonance and their
effect on system transition to chaotic motion.

Let us examine vibrations of parametrically and
self-excited systems described by differential equa-
tion [Szabelski, 1984; Huseyin & Rui, 1992; Rui &
Huseyin, 1992]:

ẍ−(α1−β1x
2)ẋ+(δ−µ1 cos Ωt)x+γ1x

3 = 0 . (1)

Our model possesses nonlinear van der Pol and
Mathieu terms and parametric excitation of Duff-
ing type. van der Pol systems with external forcing

were intensively examined in the context of elec-
tric systems [van der Pol, 1926; Ueda & Akamatsu,
1981] and biological systems e.g. the heart model
[van der Pol & van der Mark, 1928; von Hertzen &
Kongas, 1996]. In our paper we discuss vibrations
of van der Pol self-excited system with parametric
forcing instead of external one. Most of real dy-
namic systems are affected by forces of nonlinear
characteristics. In our system we assumed nonlin-
ear term of Duffing type which can have both stiff
and soft characteristics.

The article is organized as follows: After a short
introduction (in Sec. 1) we analyze vibration in the
vicinity of main resonance (Sec. 2) and obtain an-
alytic forms of the solution. The comparison be-
tween analytic and numerical simulation results is
also given. These results we use in the next, Sec. 3
where we provide the analysis of stability solution
applying Floquet theory. Section 4 is concerned
with numerical exploration of chaotic motion of the
examined system. There we investigate chaotic mo-
tion using different methods. The Lyapunov expo-
nent criterion is applied to find regions of parame-
ters indicating chaotic behavior. Some examples of
Poincaré maps, time histories and phase portraits
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are plotted to illustrate the type and the evolutions
of strange attractors. In Sec. 5 we end up with
summary and conclusions.

2. Vibrations in Case of the
Main Resonance

Introducing a small parameter ε � 1 into Eq. (1)
we obtain:

ẍ+ δx = ε[(α − βx2)ẋ+ µx cos Ωt− γx3] , (2)

where αε = α1, βε = β1, µε = µ1 and γε = γ1.
In case of the main parametric resonance for

δ = 1 (Ω ≈ 2), we can write:

1

4
Ω2 ≈ 1 + εσ1 . (3)

Applying this relation to (2), we get:

ẍ+
1

4
Ω2x=ε[(α−βx2)ẋ+σ1x+µx cos Ωt−γx3] .

(4)

To find an analytic solutions of Eq. (4) near
the resonance we proceed the multiple time scale

method [Szabelski et al., 1996]:

d

dt
= D0 + εD1 + ε2D2 + · · ·

d2

dt2
= D2

0 + 2εD0D1 + ε2(2D0D2 +D2
1) + · · · ,

(5)
where derivatives Dn = ∂/∂Tn and Tn = εnt corre-
spond to different time scales.

We evaluate the general form of solution

X = x(T0, T1, . . . ; ε) (6)

to the first and the second order of perturbation
ε the solutions may be presented in the following
forms:

• solution in the first order approximation:

x(t) ≈ a cos

(
1

2
Ωt+ ψ

)
, (7)

where a and ψ satisfy the set of equations:

ȧ = ε

(
α

2
a− β

8
a3 − µ

2Ω
a sin(2ψ)

)
(8)

aψ̇ = ε

(
−σ1

Ω
a+

3γ

4Ω
a3 − µ

2Ω
a cos(2ψ)

)
(9)

• solution in the second order approximation:

x(t) ≈ a cos

(
1

2
Ωt+ ψ

)
+ ε

[
− µa

4Ω2
cos

(
3

2
Ωt+ ψ

)
+ a3

(
γ

8Ω2
+

iβ

4Ω

)
cos

(
3

2
Ωt+ 3ψ

)]
, (10)

where a and ψ satisfy the set of equations:

ȧ = ε

(
α

2
a− 1

8
βa3 − µ

2Ω
a sin(2ψ)

)
+ ε2

(
−3αγ

4Ω2
a3 +

11βγ

64Ω2
a5 +

βµ

16Ω2
a3 cos(2ψ) +

5µγ

8Ω3
a3 sin 2Ψ

)
(11)

aψ̇ = ε

(
−σ1

Ω
a+

3γ

4Ω
a3 − µ

2Ω
a cos(2ψ)

)
+ ε2

[(
−σ

2
1

Ω3
− α2

4Ω
+

3µ2

8Ω3

)
a

+

(
3γσ1

2Ω3
+
αβ

4Ω
− γµ

4Ω3
cos(2ψ) − βµ

8Ω2
sin(2ψ)

)
a3 +

(
− 15γ2

32Ω3
− 7β2

128Ω

)
a5

]
. (12)

Results (7–9) of the first order solution were
obtained earlier by Huseyin and Rui [1992] and Rui
and Huseyin [1992] so our principal result in this
section is obtaining solution of the second order
[Eqs. (10)–(12)]. Figure 1 show vibration ampli-
tude plots versus frequency of parametric excita-
tion. Lines were obtained as result of analytical

research (AR) in first order approximation of solu-
tion [Eqs. (8) and (9)].

Comparative points obtained during numeri-
cal simulation by means of Runge–Kutta–Gill al-
gorithm (RKG) [Eq. (2)] are also presented and
marked by full [Fig. 1(a)] or open [Fig. 1(b)] circles.
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(a)

(b)

Fig. 1. Vibration amplitude a versus frequency of paramet-
ric excitation: (a) γ = −1 for soft characteristic, (b) γ = 1 for
stiff one. Lines correspond to analytic results (AR) ( full lines
correspond to stable solutions whilst dashed lines to unstable
ones respectively), circles to numerical ones (RKG).

In the middle of both pictures the synchronization
area with mono frequency are visible. Outside these
areas beats corresponding to quasi-periodic vibra-
tions occur. System parameters used in the investi-
gations [Eqs. (4) and Eqs. (8)–(10)] were following:
α = 0.1, β = 0.5, µ = 1.0, ε = 0.1 δ = 1. The

parameter γ was taken γ = −1.0 for Fig. 1(a) and
γ = 1.0 for Fig. 1(b) respectively. These correspond
to soft and stiff characteristics of the nonlinear force
[Eq. (2)].

3. Solution Stability Analysis

To proceed the analysis of solution stability we dis-
turb to the initial conditions. The disturbance δ is
defined as the subtraction between disturbed and
undisturbed solutions:

∆ = x̃− x (13)

After applying Eq. (13) to Eq. (2) and subtrac-
tion the same but unperturbed equation [Eq. (2)]
and linearization we get the following differential
equation:

∆̈− ε(α − βx2)∆̇

+ (1 + 2βεxẋ − µε cos Ωτ + 3γεx2)∆ = 0

(14)

On the base of Eq. (14) we has found the mon-
odromy matrix and have examined stability of ob-
tained solutions.

The eigenvalues of the monodromy matrices
(Floquet multipliers) determine stability and unsta-
bility of solutions [Szabelski & Warmiński, 1995a].
Some exemplary values of Floquet multipliers for
different values of parametric forcing frequency Ω
and other values as in Fig. 1 are put in Table 1 for
γ = 1.0 and in Table 2 for γ = −1.0.

The same sets of Floquet multipliers are pre-
sented in Fig. 2 for soft (γ < 0) and stiff (γ > 0)
types of spring characteristics. Figures 2(a) and
2(b) show the unitary circles in the complex plane
with the Floquet multipliers marked out. Fig-
ure 2(a) corresponds to Fig. 1(a) and Table 1 whilst
Fig. 2(b) to Fig. 1(b) and Table 2 respectively.

Transition through this circle from outside to
inside area corresponds to transition of an unstable
solution into stable one. One can easily notice that
point No. 8. (Table 1) and point No. 1 (Table 2)
are situated outside the unitary circle in the com-
plex plane [Figs. 2(a) and 2(b) respectively]. This
means that for that chosen sets of system parame-
ters solutions are unstable. The other points which
lie inside the unitary circle indicate stable solutions.

Note that stable and unstable solutions are also
marked in the amplitude plots (Fig. 1) where full
lines correspond to stable solutions and dashed lines
to unstable ones respectively.
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Table 1. Examples of Floquet multipliers which correspond to Fig. 2(a).

No. Ω x ẋ Multipliers

1 1.785 1.71078 1.37049 −0.73236, 0.00000 −0.87956, 0.00000

2 1.800 1.52429 1.54262 −0.79670, −0.13130 −0.79670, 0.13130

3 1.850 1.05822 1.72714 −0.81010, −0.21590 −0.81010, 0.21590

4 1.900 0.67112 1.69528 −0.84640, −0.22600 −0.84640, 0.22600

5 1.950 0.33860 1.15092 −0.89490, −0.20480 −0.89490, 0.20480

6 2.000 0.07380 1.13380 −0.95230, −0.15300 −0.95230, 0.15300

7 2.020 −0.00040 0.88994 −0.97740, −0.11880 −0.97740, 0.11880

8 2.045 0.02885 0.32552 −1.01040, −0.04242 −1.01040, 0.04242

Table 2. Examples of Floquet multipliers which correspond to Fig. 2(b).

No. Ω x ẋ Multipliers

1 1.953 0.22497 0.008 −1.013050, −0.032990 −1.013050, 0.032990

2 2.000 1.14540 −0.002 −0.954290, −0.142235 −0.954290, 0.142235

3 2.050 1.59320 0.013 −0.909116, −0.163160 −0.909116, 0.163160

4 2.100 1.90550 0.017 −0.878870, −0.152490 −0.878870, 0.152490

5 2.150 2.10650 0.055 −0.865090, −0.110320 −0.865090, 0.110320

(a) (b)

Fig. 2. Eigenvalues of monodromy matrices on the complex surface: (a) for γ = −1 soft characteristic, (b) γ = 1 for stiff one.

4. Chaotic Vibration of the System

As far as chaos investigations of this class of the sys-
tem are concerned chaos was investigated for the
similar vibrations model with van der Pol terms,

nonlinearity of Duffing-type but an external excita-
tion in the form [Ueda & Akamatsu, 1981; Steeb &
Kunick, 1987; Kapitaniak & Steeb, 1990]:

ẍ−(α−βẋ2)ẋ+(δ+γx2)x = B cos(ωt+φ0) . (15)
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(a) (b)

Fig. 3. Lyapunov exponent λ as a function of δ − 3a (γ1 = 1) and γ1 − 3b (δ = 1.9); other parameters have following values:
α1 = 0.2, β1 = 0.2, µ1 = 17, Ω = 4.

For that equation the scope of parameters, lead-
ing to chaos solutions, was determined. In arti-
cles [Ueda & Akamatsu, 1981; Steeb & Kunick,
1987], δ = 0 was used. In papers of Kapitaniak
and Steeb [1990], cases with δ 6= 0 and γ 6= 0,
for small γ (γ � δ) were examined. In this pa-
per we would like to provide the analogous analysis
of Eq. (1) for stiff and soft case: γ1 > 0 and γ1 < 0
respectively.

Applying Wolf algorithm [Wolf et al., 1988],
maximal Lyapunov exponents [Eq. (1)] for the
following set of parameters: α1 = 0.2, β1 =
0.2, µ1 = 17, Ω = 4, γ1 = 1, as a func-
tion of the linear term coefficient [Eq. (1)] δ
(δ ∈ [0, 20]) [Fig. 3(a)] and for α1 = 0.2, β1 =
0.2, µ1 = 17, Ω = 4, δ = 1.9 as a function
of nonlinear cubic term coefficient [Eq. (1)] γ1

(γ1 ∈ [−0.015, 0.015]) have been found [Fig. 3(b)].
In our numerical simulations we assumed the
initial conditions to be equal to x0 = 0.5 and
ẋ0 = 0.5.

In Fig. 3(a) we can point out the interval of pa-
rameter values (δ ∈ [1.5, 5.1]) for which exponent
λ is positive. For δ values from that interval, the
system behaves in a chaotic way. We have also in-
vestigated larger values of δ i.e. δ > 20 but we have
not found any positive values of λ (no chaotic solu-
tions) for assumed other values of system parame-
ters. Similarly in Fig. 3(b) we can recognize a num-
ber of intervals with positive λ. For such γ1 values
belonging to the intervals with positive λ the solu-
tions of Eq. (1) should be chaotic. Moreover from

Fig. 3(b) one can see that chaotic solutions exist
for both positive and negative γ1. Our calculations
for larger values of |γ1| (|γ1| > 0.015) indicate that
there other intervals of chaotic solutions parameters
also exist.

Regular and Chaotic type of solution are
connected with the appropriate Poincaré maps.
Figures 4(a)–4(e) show Poincaré maps for chosen
values of δ [other parameters are as in Fig. 4(b)].
In Figs. 4(a) (δ = 1.3) and 4(d) (δ = 5.3) sys-
tem vibrations is synchronized. Attractors of this
regular motions correspond to two [Fig. 4(a)] and
one [Fig. 4(d)] points respectively. Figures 4(b)
(δ = 1.7) and 4(c) (δ = 5.0) show strange attrac-
tors of chaotic motion. In these pictures one can
see the evolution of shape of the strange attrac-
tor with increasing δ. At last for larger value of
δ (δ = 20), Fig. 4(e) presents the limit cycle at-
tractor of quasi-periodic motion characteristic for
self-excited systems. This is a regular motion with
two nonrational frequencies.

For better clarity we present the examples of
time histories for chosen values of δ: Fig. 5(a) for
δ = 1.7 and Fig. 5(b) for δ = 20. Chaotic motion
of system which occurs at δ = 1.7 [the motion is
characterized by positive value Lyapunov exponent
Fig. 3(a) and the strange attractor Fig. 4(b)] has
evidently nonperiodic time history while at δ = 20
[the motion is characterized by nodal value of Lya-
punov exponent Fig. 3(a) and the limit cycle at-
tractor Fig. 4(e)] we see clearly regular motion
with beats.
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(a) (b) (c)

(d) (e)

Fig. 4. Poincaré maps for different δ, other parameters as in Fig. 3(a).

(a) (b)

Fig. 5. Time histories for two values of δ [δ = 1.7 for Fig. 5(a) and δ = 20 for Fig. 5(b)] other parameters as in Fig. 3(a).
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Poincaré maps for different γ1, other parameters as in Fig. 3(b).
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(g) (h)

(i) (j)

Fig. 6. (Continued )

On the other hand Figs. 6(a)–6(h) show
Poincaré maps for chosen values of γ1 and the same
δ. For Figs. 6(a)–6(c) γ1 takes the same zero value;
γ = −0.0016 for Fig. 6(d), γ1 = −0.0031, for
Fig. 6(e), γ1 = −0.0061, for Fig. 6(f), γ1 = −0.015,
for Fig. 6(g), γ1 = −0.02 for Fig. 6(h). Starting
from γ1 = 0 we recognize the strange attractor
[Fig. 6(a)]. Characteristic three lines splitting in
different scales provide the evidence of the fractal
structure of this attractor [Figs. 6(b) and 6(c)]. Go-
ing with parameter γ1 to smaller negative values we
have detected other chaotic [Fig. 6(e)] and regular
attractors [Figs. 6(d) and 6(f)]. They correspond
to positive and negative values of Lyapunov expo-
nent λ (Fig. 3). Even for smaller negative values
of γ1 = −0.015 [Fig. 6(g)], γ1 = −0.02 [Fig. 6(h)]
we have found also strange attractors of the similar
structure. Figure 6(i) corresponds to positive val-
ues of γ1 = 0.0015. Note that both negative and

positive values of the nonlinear term coefficient γ1

lead to the similar global structures of strange at-
tractor. One of the differences is however in the line
on border of the global attractor structure (Fig. 6)
which is shorter for positive γ1 and longer for neg-
ative one.

We also have checked that among the set of γ1

parameters which lead to a chaotic solution with
positive Lyapunov exponent [Fig. 3(b)] there are
also some short intervals of γ1 with a regular solu-
tion. For one of such values γ1 = 0.0021 we have
plotted the Poincaré map [Fig. 6(j)]. This plot in-
dicates that the motion type for this γ1 is quasi-
periodic with the limit cycle.

Figures 7(a)–7(e) presents phase portraits
which are plotted for examined earlier sets of sys-
tem parameter values. Starting from the same,
examined earlier initial conditions x0 = 0.5 and
ẋ0 = v0 = 0.5 phase portraits are plotted using
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(a)

(b)

Fig. 7. Phase portraits for some sets of parameter values of γ1 and δ [δ = 1, γ1 = 1.7 for Fig. 7(a); δ = 5.3, γ1 = 1 for
Fig. 7(b); δ = 20.0, γ1 = 1 for Fig. 7(c); δ = 1.9, γ1 = 0.0015 for Fig. 7(d); δ = 1.9, γ1 = 0.0021 for Fig. 7(e)].
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(c)

(d)

Fig. 7. (Continued )
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(e)

Fig. 7. (Continued )

dots for a long time interval. In Fig. 7(a) (δ = 1.7,
γ1 = 1) we see phase portrait of the chaotic motion.
It corresponds to the appropriate strange attractor
in Poincaré map [Fig. 4(b)] and chaotic time history
plotted in Fig. 5(a). Figure 7(b) represents regular,
periodic motion phase portrait for δ = 5.3 and γ1 =
1. Note that the steady state which is connected
with the closed line marked by an arrow in reached
after rather long time. An intermediate state and
time of approaching to the steady state depend on
the initial conditions. This phase portrait corre-
sponds to plotted earlier the singular point regu-
lar attractor of a synchronized motion in Poincaré
map [Fig. 4(d)]. For larger value of δ parameter the
motion of system evaluate to quasi-periodic vibra-
tions. Figure 7(c) shows the example of this type
of motion phase portrait [here δ has been taken to
be equal to 20 and γ1 = 1 as in Figs. 4(e) and
5(b)]. The regular pattern of this attractor well
visible. Another types of phase portraits shown in
Figs. 7(d) and 7(e) correspond also to two exam-
ples of examined earlier cases: γ1 = 0.0015 and
γ1 = 0.0021 (δ = 1.9). These two values of γ1

correspond to two types of motion which are quite

different according to Poincaré maps plotted in
Figs. 6(i) and 6(j). They describe chaotic and quasi-
periodic attractor respectively. However the vase-
like phase portraits of these motions are very sim-
ilar to each other. The difference which one can
notice is that the chaotic motion phase portrait is
full in the middle while quasi-periodic motion ones
is empty. This may be connected with the type of
self-similarity of the strange attractor Figs. 6(a)–
6(c). One can see in these pictures [Figs. 6(a)–
6(c)] that self-similarity, the fundamental structure
feature of strange attractors is not applicable to
the whole attractor but only the middle part of
it. The lack of middle structure in Fig. 7(e) may
mean then the lack of self-similarity. This can cause
the transition of system from chaotic motion to
regular one.

5. Summary and Conclusions

Considering existing and stability of differential
equation solutions, the interaction effects of self-
excited and parametric vibrations were determined.
It was found that vibrations synchronization in
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particular frequency interval of parametric excita-
tion took place. Analytic investigation was car-
ried out under certain simplified assumptions and
their verification was obtained using numerical sim-
ulation. Applying Lyapunov exponents method,
chaotic vibrations were found for particular param-
eters of the system. In particular we investigated
the system answer to change of linear and non-
linear force term coefficients. We have also exam-
ined the evolution of the strange attractors plotting
Poincaré maps and phase portraits of the model nu-
merical simulations for various system parameters.
All calculations have been done for the assumed ini-
tial conditions so analysis on possible coexistence of
different attractors for different initial conditions we
left to a future paper.
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