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Dynamics of a Gear System with Faults in Meshing Stiffness
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Abstract. Gear box dynamics is characterised by a periodically changing stiffness. In real gear systems, a backlash also exists that
can lead to a loss in contact between the teeth. Due to this loss of contact the gear has piecewise linear stiffness characteristics,
and the gears can vibrate regularly and chaotically. In this paper we examine the effect of tooth shape imperfections and
defects. Using standard methods for nonlinear systems we examine the dynamics of gear systems with various faults in meshing
stiffness.
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1. Introduction

Gears are very common systems, and practically impossible to replace in various applications where
mechanical power must be transferred. Time varying mesh stiffness due to multiple teeth contact and
a backlash between the teeth give rise to complex behaviour [1–6]. In consequence, under a dynamic
load, a typical gear system is a nonlinear oscillator, exhibiting a range of complex behaviour including
chaos [4, 7–13]. During operation the geometric parameters of the gears may change, and this causes
the corresponding nonlinear response to change [4, 5, 14, 15]. Choy et al. [16] and Kuang and Lin [17]
examined the effect of tooth wear. The vibration response of gear systems to stochastic forces has been
analysed [4, 14, 15, 18].

In practice it is important to minimise the effect of noise and keep the machine as close as possible to
a stable response. In this paper we classify meshing faults and examine the effect of broken teeth and
meshing stiffness fluctuations on the vibration response. The possibility of amplitude jumps in systems
with meshing defects is demonstrated.

2. Modelling of Gear Dynamics

Consider the single gear-pair system shown in Figure 1. In non-dimensional form, the equation of
motion can be written [4, 9, 12] as
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Figure 1. One stage gear system. Note, the relative displacement is x = r1ψ1 − r2ψ2.

where

τ = ωt,
(2)
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ω, ζ , k(τ ), g(x, η), η and B(τ ) [4] and the other symbols are defined in Table 1 and shown in Figure 1.
Often the excitation torque is assumed to be sinusoidal, and in this case B(τ ) will take to form,

B(τ ) = B0 + B1cos(τ + �)

ω2
. (3)

In the analysis that follows, the stiffness functions k(τ ) and g(x, η) need special attention. g(x, η)
has a piecewise character due to the backlash η, and is shown in Figure 2. k(τ ) is the meshing
stiffness arising from the interaction of a single-pair or multiple teeth in contact. For an ideal gear

Table 1. Symbols and parameters used in the analysis.

I1, I2 Moments of inertia

ψ1, ψ2 Rotational angles

x = r1ψ1 − r2ψ2 Relative displacement

r1, r2 Radii of gear wheels

v Relative velocity

x0, v0 Initial conditions

M1, M2 External torques

ω Excitation frequency

τ Dimensionless time

ζ Damping

η Backlash

k(τ ) Meshing stiffness

g(x, η) Nonlinear stiffness function

B, B0, B1 External excitation

δi Distance between increasing teeth contacts

σδ , σk Standard deviations
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Figure 2. The nonlinear stiffness function g(x, η) with an assumed backlash parameter η = 10.

Figure 3. Various realizations of meshing stiffness, k(τ ), used in the simulations. ‘1’ corresponds to the ideal system without
errors while ‘2’ and ‘3’ show the meshing stiffness with one and two broken teeth. ‘4’ has a randomised distance δi between
increasing teeth contacts with a standard deviation of σδ = 0.2δ̄i (δ̄i = 0.8π in the non-dimensional time domain), and ‘5’
is a randomised meshing stiffness. Here the amplitude changes with a standard deviation σk = 0.1 related to the maximum
deterministic value kmax = 1.

system we have followed references [4, 12] and assumed that this meshing stiffness changes pe-
riodically. Possible variations from the ideal case, and other possible meshing errors, are plotted
in Figure 3. Note here that the nonlinearities arise from the piecewise linear character of the non-
linear function g(x, η). Nonlinear dependence of the nonlinear external and parametric excitation
functions on τ = ωt (Equation (1)) appears only as a phase modulation to the periodic functions
cos(τ ) and k(τ ) (plot ‘1’ in Figure 3), and, as usual, the additional dimension corresponding to
the τ variable is wrapped. However, other models include different nonlinear effects such as im-
pacts with a restitution coefficient [15, 19–23]. Schmidt [24] and Warmiński et al. [25, 26] included
nonlinear self-excitation effects caused by dry friction between the gear teeth when the lubrica-
tion layer fails. Warminski et al. [4, 25, 26] examined nonlinear corrections due to a Duffing type
stiffness.

Figure 4 shows the results of simulations of the model given by Equation (1), with time dependent
meshing stiffness but without errors. We have used following system parameters: ω = 1.5, ζ = 0.08,
B0 = 1.0, B1 = 4.0, η = 10. Note that the backlash η = 10 was chosen to produce the chaotic solutions
found in earlier papers [4]. In any nonlinear system multiple solutions may coexist, and the solution
obtained depends on the initial conditions. With the above parameters, there are indeed multiple solutions
for the gear model, and this effect was examined in detail in a previous paper [27]. In Figures 4a and b
we show regular and chaotic solutions, depending on the initial conditions for [x0, v0] = [−9, 1] and
[x0, v0] = [−9, −1], respectively. Figure 4c shows the two coexisting attractors, obtained for various
initial conditions, on the same graph.
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Figure 4. Time series and the Poincaré map for an ideal system for various initial conditions [x0, v0]; regular motion for
[x0, v0] = [−9, 1] (a) and chaotic motion for [x0, v0] = [−9, −1] (b), respectively. Poincaré map for various initial conditions
(c). The characters a and b in figure (c) denote the regular and chaotic attractors given by time series (a) and (b).

3. Errors in Meshing Stiffness

In this section we examine the effect of meshing stiffness errors. First consider a gear with one or two
next neighbour teeth missing on one of the gear wheels, where each gear wheel has 50 teeth. The meshing
stiffnesses, k(τ ), are given in Figure 3 as ‘2’ and ‘3’, respectively, and should be compared to the ideal
case, ‘1’. The response is simulated using the model given in Equation (1) with the meshing stiffness
k(τ ) given by curves ‘2’ and ‘3’ (Figure 3). Although the effect of one broken tooth appears to be fairly
benign in terms of the gears dynamics, if two adjacent teeth are broken the result is a complex response
of the system showing the characteristic amplitude jump phenomenon as the solution changes from the
regular to the chaotic attractor. This is visible in Figure 5, which shows a time history for this case,
and also shows the reverse jump from the chaotic to the regular attractor. Comparing to the ideal cases
without any stiffness errors presented in Figures 4a–c (note the corresponding amplitudes of vibrations)
it is clear that the system stays for a longer time in the chaotic attractor with intermittent regular motion.
This result confirms previous results on stochastic jumps [4, 14] in systems with a stochastic force.
However, the system modelled here is fully deterministic (Equation (1)) and the broken teeth act as
additional parametric excitation (Figure 3).

We have also investigated vibrations of gears with a random distance δi between their increasing
teeth contact (Figure 3, ‘4’). The results for two different noise levels and two different initial conditions
[x0, v0], which correspond to different attractors in the deterministic case (Figure 4), are shown in
Figures 6a–d. Interestingly, for weak noise the system chooses the chaotic attractor. This conclusion
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Figure 5. Time series for a gear system with two broken neighbouring teeth. Initial conditions: [x0, v0] = [−9, 1].

Figure 6. Time series for a gear system with a randomised distance δi between increasing teeth contacts with two different
standard deviations: σδ = 0.2δ̄ in (a) and (b), and σδ = 0.3δ̄ in (c) and (d); and two different initial conditions [x0, v0] = [−9, 1]
in (a) and (c), and [x0, v0] = [−9, −1] in (b) and (d).

differs from that obtained in the paper by Warmiński et al. [4] but the assumptions about the noise
are different. Warmiński et al. [4] used an external stochastic force generated by stochastic Langevin
simulations rather than the stochastic stiffness modelling in the present paper. For stronger noise the
motion shows an intermittent character with short jumps to the regular attractor, as in the previous case
with broken teeth (Figure 5).

Figure 7 corresponds to the meshing stiffness with a randomised amplitude but a regular distance
(Figure 3, ‘5’), for σk = 0.1. Here we observe that neither attractor is favoured for these conditions.

Figure 7. Time series for a system with randomised amplitude showing regular motion for initial conditions [x0, v0] = [−9, 1],
(a), and chaotic motion for [x0, v0] = [−9, −1], (b).
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Figure 8. Bifurcation diagram for the case of randomised meshing stiffness amplitude: x is plotted stroboscopically against the
square deviation of fluctuating meshing stiffness σk for two different initial conditions [x0, v0] = [−9, 1] (the upper panel) and
[x0, v0] = [−9, −1] (the lower panel). Note the characteristic jumps between the attractors appear in both cases at σk ≈ 0.3.

Eventually, for a sufficiently large noise level (σk ≈ 0.3) the response returns to the intermittent
behaviour with jumps between the regular and chaotic attractors. This effect is shown clearly in Figure 8,
which shows the bifurcation diagram x against noise level σk .

4. Conclusions

We have examined the dynamics of gears in the presence of meshing faults. Such faults may arise due to
wear during operation, or incorrect tolerances during production. The analysis of various types of errors
and tooth faults highlights the presence of a dynamic jump phenomenon. Such jumps between different
types of motions, namely chaotic and regular, can be crucial for the system reliability. In this respect our
results are consistent with earlier results [4, 14, 18]. Moreover, the system is more sensitive to errors in
the distance between teeth than fluctuations in the stiffness magnitude, although the qualitative effect is
similar. One broken tooth has little influence on the dynamics of the gears, although two broken teeth
can have a significant effect.
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