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We apply the Coherent Potential Approximation (CPA) to a simple extended Hubbard model with
a nearest and next nearest neighbour hopping for disordered superconductors with s-, d- and
p-wave pairing. We show how the Van Hove singularities in the electron density of states enhance
the transition temperature Tc for exotic superconductors in a clean and weakly disordered system.
The Anderson theorem and the pair-breaking effects in presence of the Van Hove singularity
caused by non-magnetic disorder are also discussed.

1. Introduction

Magnetic and non-magnetic impurities in superconductors always attracted interest and
their treatment played the essential role in theories of superconductivity.

Since the works of Anderson [1] and Abrikosov and Gorkov [2] the influence of
magnetic and non-magnetic disorder on superconductors has been treated in many
ways [3–9]. Their arguments, originally applied to classic BCS superconductors, were
reexamined for novel, exotic superconductors [10, 11] with the anisotropic order param-
eters extended s-wave, d-wave character [4, 12–27] and also recently discovered
[28–31] p-wave ruthenates [5, 32–35].

Examining the influence of various kinds of magnetic and non-magnetic disorder,
caused by structural, substitutional, irradiational defects etc., on properties of conven-
tional and unconventional superconductors has shown, that their responses to disorder
are quite different. In contrast to conventional materials where only magnetic impuri-
ties affect the superconducting properties, for unconventional superconductors the
effect of both magnetic and non-magnetic disorder is usually strong [36–51].

Thus it is not surprising, that the response to disorder becomes the fundamental cri-
terion of unconventionality of the physical mechanism leading to superconductivity.
Moreover, effects of disorder are of interest because the high temperature superconduc-
tors have to be doped (La2�xSrxCuO4 with strontium x ¼ 0:15, YBa2Cu3O7�x with
oxygen x ¼ 0:1) to show the optimal critical temperature and doping is always accom-
panied by disorder.

On the other hand in these quasi two-dimensional layered materials the Fermi
energy has been found in the vicinity of Van Hove singularities of the electron density
of states [52–67]. This has lead to the formulation of the Van Hove scenario for high
temperature superconductors which says that the optimal critical temperature is
reached when the chemical potential passes through the Van Hove singularity in the
density of states [19, 52, 53, 58]. Doping with charge carriers does not only change the
density in the system but also smears the density of states eliminating its singularities
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and, specially for anisotropic supercon-
ductors, introduces the electron pair-
breaking phenomenon [4, 6, 12, 20].

Thus one has to investigate the effect
of rise and fall of the critical temperature
Tc near the Van Hove singularities very
carefully simultaneously, taking into ac-
count the effects of disorder. Clearly dis-
order reduces the critical temperature Tc

by elimination of singularities in the den-
sity of states and, at the same time, by
braking pairs. The present paper is the
extension of the previous ones [19, 20,
34] where the electron hopping was intro-

duced only between nearest neighbour lattice sites. Here following Refs. [68, 69] we
introduce the hopping to the next nearest sites t0 (i.e. the ratio of hopping parameters t,
t0 for YBaCuO was suggested to be t0=t ¼ 0:45) and investigate the effect of disorder on
superconducting properties.

In the normal states the nonzero hopping to the next neighbour sites t0 introduces
the distortion of the Fermi surface (Fig. 1a) which results in considerable changes in the
electron density of states (Fig. 1b). Note, that in the case t0 6¼ 0 the central Van Hove
singularity produces a stronger enhancement of the density of states (NðEÞ for
E � Ev1) than for t0 ¼ 0 (Fig. 1b). Moreover, the other Van Hove singularity associated
with the bottom edge of the band Ev2 creates the second peak in the density of states
NðEÞ. Thus, depending on the band filling, the additional electron hopping t0 should
have an effect on the critical temperature Tc, rising it to a higher value. On the other
hand, the distorted Fermi surface with the stronger dependence on k (Fig. 1a) seems to
be less stable in the presence disorder as k is not a good quantum number in a disor-
dered system.

The present paper is organized as follows. In Section 2 the discussion starts with the
extended attractive Hubbard model defined on the square lattice which has the ex-
tended s-, d- and p-wave order parameter solutions. Than we shortly overview and
classify various types of Van Hove singularities in the electron density of states of one
band model and their influence on the superconducting critical temperature Tc. In Sec-
tion 3 we investigate disordered superconducting systems and apply the Coherent Po-
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Fig. 1. a) Distortion of the Fermi surface by
the next neighbour electron hopping t0. The
full line denotes the Fermi surface for t0 ¼ 0
while the dashed line shows t0 ¼ 0:45t. Fermi
energy is at Van Hove singularity EF ¼ Ev.
b) The electron density of states NðEÞ for the
2D lattice, where the full line corresponds to
t0 ¼ 0 and the dashed line to t0 ¼ 0:45t. The ar-
rows denote the Van Hove singularities Ev, Ev1

and Ev2, respectively (EF ¼ 0)



tential Approximation (CPA) on the attractive Hubbard model. The Anderson theorem
for non-magnetic impurity effect on isotropic s-wave solutions and the pair-breaking
effect in case of anisotropic pairing is also discussed. Section 4 is devoted to the exam-
ination of the disorder effect on the superconducting critical temperature Tc. Finally,
Section 5 contains conclusions and remarks.

2. The Role of Van Hove Singularities in a Clean System

2.1 Bogolyubov-de Gennes equation

We start with the single band Hubbard model with an attractive extended interaction
which is described by the Hamiltonian [68–70]

H ¼
P
ijs

tijc
y
iscjs þ 1

2

P
ij
Uijninj �

P
i
ðm � eiÞ ni : ð1Þ

In the equation above ni ¼ ni" þ ni# is the charge on the site labeled i, m is the che-
mical potential. Disorder is introduced into the problem by allowing the local site
energy ei to vary randomly from site to site, cyis and cis are the Fermion creation and
annihilation operators for an electron on the site i with the spin s, tij is the ampli-
tude for hopping from site j to site i (with tii ¼ 0) and finally Uij is the attractive
interaction (Uij < 0) which causes superconductivity and can be either local (i ¼ j) or
non-local (i 6¼ j). Starting from Eq. (1) we apply the Hartree-Fock-Gorkov [71] ap-
proximation, which results in the Bogolyubov-de Gennes equation for a singlet (s- or
d-wave) superconductor:

P
l

ðei � mÞ dil � til � Dil

�D*il ð�ei þ mÞ dil þ til

� �
ul"
vl#

� �
¼ E

ui"
vi#

� �
; ð2Þ

where ul" and vl# are electron and hole wave functions with up anti parallel spins " and
# respectively. The usual singlet one particle Green function, in the Nambu space

Gði; j; iwnÞ, at the Matsubara frequency wn ¼ p

b
ð2nþ 1Þ satisfies

P
l

ðiwn � ei þ mÞ dil þ til Dil

D*il ðiwn þ ei � mÞ dil � til

� �
G11ðl; j; iwnÞ G12ðl; j; iwnÞ
G21ðl; j; iwnÞ G22ðl; j; iwnÞ

� �
¼ dij1 ð3Þ

where the pairing potentials Dij will be taken to be nonzero only when the sites i and j
coincide (i ¼ j) for on-site interaction Uii, or are nearest neighbours for off-diagonal
interaction Uij. On the other hand in case of triplet (p-wave) pairing we have instead of
Eq. (2)

P
l

ðei � mÞ dil � til 0 �D""
il � D"#

il

0 ðei � mÞ dil � til �D#"
il � D##

il

�D""�
il � D#"�

il ð�ei þ mÞ dil þ til 0

�D"#�
il � D##�

il 0 ð�ei þ mÞ dil þ til

0
BBBB@

1
CCCCA

ul"
ul#
vl"
vl#

0
BB@

1
CCA ¼ E

ui"
ui#
vi"
vi#

0
BB@

1
CCA ; ð4Þ

rewritten as

P
l

ðiwn � ei þ mÞ dil þ til½ � 1 Dil

Dþ
il ðiwn þ ei � mÞ dil � til½ � 1

� �
G11ðl; j; iwnÞ G12ðl; j; iwnÞ
G21ðl; j; iwnÞ G22ðl; j; iwnÞ

� �
¼ dij1 ð5Þ
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on the analogy of the equation of motion for the Green function in Eq. 3 with the spin
dependent 4 � 4 Green function. Each of its components Gnmðl; j; iwnÞ is defined as

Gnmðl; j; iwnÞ ¼
G""

nmðl; j; iwnÞ G"#
nmðl; j; iwnÞ

G#"
nmðl; j; iwnÞ G##

nmðl; j; iwnÞ

� �
; n;m ¼ 1; 2 : ð6Þ

The order parameter for triplet pairing reads

Dij ¼
D""

ij D"#
ij

D#"
ij D##

ij

 !
: ð7Þ

We assume that the hopping integrals tij can take nonzero values for the nearest and
next nearest neighbours. For a clean system tij can be expressed in k-space by the Four-
ier transform Ek ¼

P
j
tij e�iRijk as

Ek ¼ �2tðcos kxaþ cos kyaÞ þ 4t0cos kxa cos kya ; ð8Þ
where t represents the nearest neighbour site amplitude of electron hopping, while t0

corresponds to next nearest neighbour hopping, a denotes the lattice constant, m is the
chemical potential equal to the Fermi energy at zero temperature (m ¼ EF for T ¼ 0).
We shall refer to the Greens function matrix as Gði; j; iwnÞ which will be of 2 � 2 or
4 � 4 size for singlet or triplet solution. The above equations have to be completed by
the self-consistency condition for pairing potential

Dij ¼ Uij
1
b

P
n

eiwnh G12ði; j; iwnÞ ; ð9Þ

for the singlet pairing case and

Daa0

ij ¼ Uij
1
b

P
n

eiwnh Gaa0

12 ði; j; iwnÞ ; a;a0 ¼"; # ð10Þ

for the triplet one, where h is a positive infinitesimal, b ¼ 1
TkB

is the inverse of tem-

perature T and Boltzman constant kB (in the units we use here kB ¼ 1). To simplify
matters we have assumed that the Hartree term Uijhnj�si can be absorbed into the
hopping integral tij and dropped it from Eqs. (2) to (5). As usual Eqs. (9) and (10) are
to be solved together with the corresponding equations for the chemical potential m
that satisfies

n ¼ 2
b

P
n

eiwnh G11ði; i; iwnÞ ð11Þ

for singlets or

n ¼ 2
b

P
n

eiwnh G""
11ði; i; iwnÞ ð12Þ

for triplets, where n is the number of electrons per unit cell.
Here we do not wish to be very specific about the physical nature of the point de-

fects represented by the site energies ei. We are rather going to provide a reliable ana-
lysis of the simplest possible nontrivial model. Thus we take them to be independent
random variables defined to have values 1

2 d and � 1
2 d with equal probability of 1/2 on

every site [19, 20]. As might be expected we shall be interested in the average of
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Gði; j; iwnÞ over the above ensemble. To calculate �GGði; j; iwnÞ we shall make use of the
Coherent Potential Approximation (CPA) which is the best method at hand for the
mean field theory of disorder [72].

2.2 Van Hove singularities in clean superconductors

Let us assume that the sites form a square lattice. Then for a clean system (ei ¼ 0 for
all i), in the normal state, where Dij ¼ 0, the spectrum is given by Ek (Eq. 8). It has a
saddle point Van Hove singularity at Ev ¼ 4t0, resulting in the logarithmic divergence of
the density of states NðEÞ � �lnðE� E0

vÞ (Fig. 1b). The density of states for a normal
state NðEÞ is defined as

NðEÞ ¼ 1
N

P
k

dðE� EkÞ ¼
a2

4p2

ð
E¼Ek

df rkEkj j�1 ; ð13Þ

where df is an element of the Fermi surface (Fig. 2b). NðEÞ reaches its maximum if the
Fermi surface satisfies the relation E� Ek ¼ 0. Finally, the density of states NðEÞ can
also be expressed by the elliptic function of the first kind KðEÞ [65],

NðEÞ ¼ 1
N

P
k

Im
1

Eþ ih � Ek
¼ 1

2p2t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Et0

t2

q K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16t2 � ðE� 4t0Þ2

16t2ð1 þ Et0

t2 Þ

s !
: ð14Þ

Van Hove singularities in the density of
states (Eqs. (13), (14)) correspond to three
characteristic flat regions of Ek, where
rkEk ¼ 0. In Fig. 2a we have plotted band
the energy Ek (Eq. (8)). For cuprates the va-
lue of the next nearest neighbour hopping
term t0 is usually considered as 0 < t0 < 0:5t.
Here we have chosen t0 ¼ 0:45t (Eq. (8)).
One can easily determine Van Hove singula-
rities for saddle points: ðjkxj; jkyjÞ ¼ ðp=a; 0Þ,
ð0;p=aÞ and these are corresponding to the
band edges: the bottom one ð0; 0Þ as well as
the top one ðp=a;p=aÞ. Three isoenergetic
contours ‘3’, ‘2’, ‘1’ have been marked in
Fig. 2a for E=t ¼ 2, 1:8, 1:6. They correspond
to Fermi surfaces (Fig. 2b) for three values
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Fig. 2. Band structure (a) and Fermi surfaces (a, b)
for the one band electron structure with next nearest
neighbour hopping: Ek ¼ �2tðcos kx þ cos kyÞ
þ4t0 cos kx cos ky with t0 ¼ 0:45t, and three different
band fillings: n ¼ 0:584 (1), n ¼ 0:467 (2), n ¼ 0:388
(3)



of band filling n ¼ 0:338, 0:467, 0:584 respectively. Note that for n ¼ 0:584 the Fermi
surface has hole like characteristics, while for n ¼ 0:388 it corresponds to an electron
like system. For n ¼ 0:467 the Fermi energy EF ¼ 1:8t passes through the Van Hove
saddle point singularity.

For the on-site attraction (negative U) Uii ¼ U the linearized gap equation (Eq. (9))
at Tc can be written as

1 ¼ U

p

ð1
�1

dE
1
N

P
k

dðE� Ek � mÞ
2E

tanh
bcE

2

� �
¼ U

p

ð1
�1

dE
NðEÞ

2E
tanh

bcE

2

� �
;

ð15Þ
where bc ¼ 1=ðTckBÞ, and Tc is a critical temperature.

If the interaction is off-diagonal then the Fourier transform of Uij leads to the expression

Uðk � qÞ ¼ �jUj
hkhq þ gkgq

4
þ 2 sin kxa sin qxaþ 2 sin kya sin qya

� �
; ð16Þ

where

gk ¼ 2ðcos kxaþ cos kyaÞ;
hk ¼ 2ðcos kxa� cos kyaÞ:

(17)

The pairing parameters for the corresponding symmetry of the solution, extended s-,
d- or p-wave have the form

Ds
k ¼D0gk ;

Dd
k ¼D0hk ; ð18Þ

D
p
k ¼Dx

0 sin ðkxaÞ þ Dy
0 sin ðkyaÞ ;

and Dp
k is a Fourier transform of the matrix Dij (Eq. (7)). Despite of the different types

of possible solutions described by Eqs. (3), (5), (18) the linearized gap equation for the
critical temperature can be written in a compact form

1 ¼ U

p

ð1
�1

dE
NaðEÞ

2E
tanh

bcE

2

� �
; ð19Þ

depending on the solution symmetry a ¼ s; d; p.

The normal density of states NðEÞ ¼ 1
N

P
k

dðE� EkÞ and the corresponding projected

densities (NsðEÞ, NdðEÞ and NpðEÞ) used in Eq. (19) can be expressed in terms of
Green functions of the normal system

NðEÞ ¼ � 1
N

P
k

1
p

Im G11ðk;EÞ ;

NsðEÞ ¼ � 1
N

P
k

g2
k

4
1
p

Im G11ðk;EÞ ;

NdðEÞ ¼ � 1
N

P
k

h2
k

4
1
p

Im G11ðk;EÞ ;

NpðEÞ ¼ � 1
N

P
k

2ðsin kxaÞ2 1
p

Im G11ðk;EÞ :

(20)
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To calculate the above densities of states we
have used the recursion method described in
the Appendix A. The appropriate densities of
states for the clean system NðEÞ, NsðEÞ NdðEÞ
are plotted in Fig. 3a. Figure 3b shows the
projected density for the p-wave NpðEÞ in
comparison to NðEÞ.

The full line in Fig. 3a corresponds to the
electron density of states NðEÞ with the spectral
dependence of Ek (Eq. (4)) and t0 ¼ 0:45. The
position of the central Van Hove singularity
Ev ¼ �1:8t (Fig. 2) corresponds to a band fill-
ing of n ¼ 0:467. Apart from that singularity
one can see another sharp peak in the lower

edge of the band and a much smoother one in the upper edge. Both of them are singula-
rities of band edges: bottom and top respectively. For the on-site interaction Uii the shape
of NðEÞ in Fig. 3a and the gap equation (Eq. (15)) indicates that the critical temperature
Tc should be enhanced effectively around the first two singularities for relatively low elec-
tron densities n < 1. As a matter of fact such a situation can be seen in the calculations of
Tc (Fig. 4, clean system for curves denoted by ‘1’). The critical temperature Tc obtained
from the Eqs. (19) and (20) for various symmetries of the order parameter are depicted in
Fig. 4a–c by lines denoted by ‘1’ as a function of band the filling n. Figure 4a corresponds
to extended s-, d-wave cases while Fig. 4b shows Tc for the p-wave solution. In this case a
maximum exists in the projected density of states NpðEÞ close to the Van Hove singulari-
ties in NðEÞ but it is not so sharp as in NðEÞ or NsðEÞ and NdðEÞ because of the addi-
tional smearing term 2ðsin kxaÞ2 in the formula for NpðEÞ (Eq. (20)). Nevertheless, this
secondary peak also produces the enhancement of the critical temperature Tc (Fig. 4b).
For comparison, in Fig. 4c we present Tc for an isotropic on-site s-wave solution. Clearly,
these calculations support the Van Hove singularity scenario. Note that at a relatively low
temperature the Van Hove singularity is passing n ¼ 0:467 (Figs. 2, 3a). The lack of the
particle-hole symmetry results in the shift of the maximum value of Tc to a higher value of
electron densities so in the optimal doping the superconductor is a hole superconductor.

Moreover for n ! 2 we observe the degradation of the critical temperature Tc. In in
this limit of slowly changing density of states we can apply the result for the constant
density of states

NðEÞ ¼ 1
D

QðE�D=2Þ Qð�EþD=2Þ ; ð21Þ

where D denotes the bandwidth and QðEÞ is the Heaviside step function.

phys. stat. sol. (b) 229, No. 3 (2002) 1433

Fig. 3. a) Electron density of states NðEÞ (full line)
and projected densities (dotted lines) for extended
s-wave NsðEÞ and d-wave type NdðEÞ; b) NðEÞ (full
line) and p-wave type NpðEÞ (dotted line) for a nor-
mal pure system, the chemical potential is m ¼ 0



For small on-site attractive interac-
tion U, the critical temperature T*c is
given by the analytic formula [68, 70]

T*c ¼
eg

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2 � nÞ

p
exp � D

jUj

� �
: ð22Þ

In our case, the degradation of Tc is
faster, Tc � Tc*, due to the asymmetry
of the electron density of states
NðEFÞ � 1=D for n ! 2.

The Van Hove singularities in the
spectrum Ek show up also in the pro-
jected densities of states NsðEÞ, NdðEÞ
(Fig. 3a). Due to the factors gk and hk
(Eqs. (17) and (22)) the dependences
TcðnÞ are severely modified (Fig. 4a,
curve ‘1’). Moreover, the maximum va-
lue of NpðEÞ (Fig. 3b) is also close to the
Van Hove singularity and it results in
the optimum of Tc (Fig. 4b, curve ‘1’).

It is worthwhile to notice here that sin-
gularities at the band edges are impor-
tant for an extended s-wave case while
the saddle point, located in the middle of
the band, is important for d-wave pair-
ing, similarly to an isotropic s-wave case.

The positions of the Van Hove singularities result in the strong band filling n depen-
dence of Tc (Fig. 2b). Again the pairing dominates selected regions of n. In the case of
a d-wave it is the middle region of n � 0:5 while for extended s-wave pairing it is rather
the low electron densities region (n ! 0); the high electron densities region (n ! 2) is
also possible, but the Tc is much smaller. The same relation as in the on-site pairing
case governs the basic behaviour (Eq. (22)). However, NðEÞ ¼ 1=D should be substi-
tuted by the corresponding projected density of states NaðEFÞ. Thus, away the Van
Hove singularity (n ! 2)

Ta
c � exp � 1

NaðEFÞjUj

� �
a ¼ s; p; d : ð23Þ
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Fig. 4. a) Critical temperature Tc versus band
filling n for extended s-wave and d-wave pair-
ing for a pure ‘1’ and alloyed disordered sys-
tem ‘2’–‘4’ (depending on d); and U ¼ �1:5t.
Full lines correspond to the d-wave solution
and dashed ones to the extended s-wave;
b) Tc versus band filling n for the p-wave so-
lution; c) for comparison TcðnÞ for the on-site
s-wave solution



In all cases the Van Hove singularities play the mayor role and could be identified as
the source of a raise of the critical temperature Tc. Its dependence on doping n should
be described rather by a strongly changing function in contrast to the case of a constant
density of states (Eq. (14)) where Tc is simply

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2 � nÞ

p
.

However it is also worthwhile to note that depending on the pairing symmetry differ-
ent Van Hove singularities can matter and because of the nonsymmetric character of
densities of states this effect is approximate. Due to this asymmetry we observe the
additional shift of the optimal doping towards the center of a band. Interestingly, differ-
ent Van Hove singularities and corresponding shifts depend on the solution type and
the interaction range. Eventually, an extended s-wave solution appears to be an elec-
tron superconductor while a d-wave can be identified as a hole one.

The formulae for a critical temperature Tc (Eq. (19)) are based on the integral over
the appropriate DOS which possesses Van Hove singularities. The effect of shift is
stronger for smaller Tc where a hyperbolic tangent is smearing the function under inte-
grals. It is also worth to note that the Van Hove scenario is working better for super-
conductors with relatively small transition temperature Tc (which corresponds to a
small interaction parameter U). This can easily be seen from the following function

FðTc;EÞ ¼
2Tc

ðE� mÞ tanh
E� m

2Tc

� �
ð24Þ

present in the gap Eqs. (9), (12). It can be interpreted as leading to a natural cut-off EC

around the chemical potential m. Note that if the temperature Tc is small then the func-
tion FðTc;E� mÞ is not zero in the narrow range of energies around m only. In fact in
the limit Tc ! 0 it tends to the Dirac delta function ðFðTc;E� mÞ ! dðE� mÞÞ and the
cut-off is limited to the neighbourhood of the E ¼ m point. Note, that for finite Tc,
EC � 2Tc. Consequently, for the logarithmic Van Hove singularity in the density of
states near m it is

NðEÞ � �N0 ln
E� m

D

����
���� ; ð25Þ

and we get the Labbe-Bok formula for Tc [55, 56, 58]

Tc � exp � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
jN0Uj

p
( )

: ð26Þ

3. CPA for the Disordered Hubbard Model

As mentioned above, the technical question we shall answer in this paper is what hap-
pens to the above behaviour when the site energies ei are not the same on all sites but
are randomly distributed. For example in a binary alloy, AcB1�c, we have random dis-
tribution of site energies: ei ¼ ðeA; eBÞ depending on occupation at the site i by atom A
or B with probabilities PA;ðBÞ ¼ c and ð1 � cÞ, respectively. Such a problem has been
dealt with on a number of occasions in the past [18–20, 34, 73–78] in the Coherent
Potential Approximation (CPA). Here we shall follow the usual arguments generalized
as appropriate. In short, we shall take the CPA to mean that the coherent potential
SðEÞ ¼ Sði; i;EÞ [72], in a site approximation, is defined by the zero value of an aver-
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aged t-matrix Tði; i;EÞ. Namely

hTaði; i;EÞi ¼
P
a
PaTaði; i;EÞ

¼ hðVa � SsðEÞÞ ð1 � ½Va � SðEÞ� �GGði; i;EÞÞ�1i ¼ 0 ;

ð27Þ

where a ¼ A;B specifies the occupation of the site i and hence the disordered potential
Va.

In case of on-site attraction (Eq. (1) with Uij ¼ Uiidij). In the limit of small fluctua-
tions in the pairing potential (Dii ¼ Di), a constant averaged value

Di ! �DD for all i ð28Þ

can be applied.
Using now CPA equations (Eq. (27) and Appendix B) it can be readily shown that

due to the disorder �DD and E in the clean limit is renormalized to ~DD and ~EE in the same
way

~DDðEÞ ¼ �DD
2E� Tr SðEÞÞ

2E
;

~EE ¼ E
2E� Tr SðEÞÞ

2E
:

(29)

On account of the general symmetry between the averaged Green function Gði; i;EÞ
elements and that of the coherent potential SðEÞ, for complex energies, it follows that

G11ði; j;EÞ ¼ G22ði; j;�E*Þ ; ð30Þ

S11ðEÞ ¼ S22ð�E*Þ : ð31Þ

Note that one can write Eq. (29) in terms of Matsubara frequencies (E ¼ iwn)

~DDðwnÞ
�DD

¼ ~wwn

wn
; ð32Þ

where

i ~wwn ¼ iwn � S11ðiwnÞ : ð33Þ

Eventually Eq. (31) leads to the linearized gap equation (Appendix B)

1 ¼ U

ð1
�1

dE �NNðEÞ
tanh

bE

2

� �
2E

: ð34Þ

This equation is related directly to the similar one of the clean case (Eq. (15)) with one
difference due to the substitution of the density of states for the pure system NðEÞ by
the averaged one for the doped material �NNðEÞ. Evidently, assuming small fluctuations
in the the pairing potential (Eq. (28)) one gets a critical temperature Tc weakly depend-
ing on disorder. This is the content of the Anderson theorem [3, 79] which rests on the
assumption that the pairing potential does not fluctuate in space Di � �DD for all i. How-
ever, it should be noted that in a short coherence length limit the situation can be
opposite. In that case, allowing the spatial fluctuations of the pairing amplitude Di 6¼ Dj
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induced by the site energy disorder ei 6¼ ej or introduced by the randomly distributed
attractive centers (Uii ¼ 0 for some lattice sites i), the Anderson theorem breaks down
even for conventional on-site s-wave superconductors [77, 78].

For a constant pairing parameter as in Eq. (28) the generic consequence of disorder
in the system with on-site attraction is the smearing of the structure in the averaged
density of states �NNðEÞ (Eq. (34)). To illustrate the consequences of it in our model we
have calculated �NNðEÞ using the standard CPA procedure [19, 20, 76] for c ¼ 0:5,

eA ¼ � d

2
, eB ¼ d

2
.

The results for various values of the scattering strength d leading to the smearing of
the Van Hove singularities in the averaged density of states �NNðEÞ, are shown in Fig. 5a.
Van Hove singularities are still present here for a relatively weak disorder strength
d � 1t while for a stronger one (d ¼ 2t) one can notice additional splitting of singulari-
ties caused by the model of disorder. This is the so called split band regime [72, 78].
Namely the two peaks are the remnant of the Van Hove singularities of the two, A and
B, pure metals.

Let us now examine a disordered system with the inter-site attraction Uij. Here we
assume that the inter-site pairing parameter Dij can be substituted by its average �DDij

[18–20]. Thus, in the case of a singlet pairing (extended s- or d-wave), the on-site im-
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Fig. 5. a) Normal state density of states NðEÞ and projected densities: b) extended s-wave NsðEÞ,
c) d-wave type NdðEÞ and d) p-wave NpðEÞ, respectively, for different values of disorder strength
d=t ¼ 0:0, 0:1, 0:2, 0:3. Arrows show the directions of d change. Here, the chemical potential is
m ¼ 0



purity potential Va can be expressed as

Va ¼ ea 0
0 �ea

� �
; a ¼ A or B ; ð35Þ

while the coherent potential matrix has the form

SðEÞ ¼ S11ðEÞ 0
0 S22ðEÞ

� �
: ð36Þ

Naturally, the averaged Green function, �GGði; i;EÞ can be expressed as follows:

�GGði; i;EÞ ¼ 1
N

P
k

�GGðk;EÞ ¼ 1
N

P
k

E� Ek � S11ðEÞ �DDk
�DD*k Eþ Ek � S22ðEÞ

� ��1

:

ð37Þ

In case of triplet pairing (p-wave) the following notation should be introduced [34, 35]
instead of the Eqs. (35)–(37):

Va ¼

ea 0 0 0
0 ea 0 0
0 0 �ea 0
0 0 0 �ea

2
664

3
775 ; a ¼ A or B ; ð38Þ

for the impurity potential and the coherent potential

SðEÞ ¼

S11ðEÞ 0 0 0
0 S11ðEÞ 0 0
0 0 S22ðEÞ 0
0 0 0 S22ðEÞ

2
664

3
775 ; ð39Þ

respectively. Again the averaged Green function is given by

�GGði; i;EÞ ¼ 1
N

P
k

�GGðk;EÞ ¼ 1
N

P
k

ðE� Ek � S11ðEÞÞ 1 �DDk
�D*D*

k ðEþ Ek � S22ðEÞÞ 1

� ��1

;

ð40Þ

while the conditionally averaged Green function at the impurity site (a ¼ A or B) has
the following form:

Gaði; i;EÞ ¼ �GGði; i;EÞ ð1 � ½Va � SaðEÞ� �GGði; i;EÞÞ�1 : ð41Þ

The averaged pairing parameters can be written as in Eqs. (18)

�DDs
k ¼ �D0D0gk ;

�DDd
k ¼ �D0D0hk ; ð42Þ

�DDp
k ¼ �DDx

0 sin ðkxaÞ þ �DDy
0 sin ðkyaÞ :

For anisotropic s-, d- and p-wave pairing symmetries the gap equations (Eqs. (9) and
(10)) take the form

Dk ¼ 1
N

P
q

Uk�q

p

ð1
�1

dE Im �GG12ðk;EÞ
1

ebw þ 1
ð43Þ
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for singlets (extended s- and d-wave) and

Dk ¼ 1
N

P
q

Uk�q

p

ð1
�1

dE Im �GG12ðk;EÞ
1

ebw þ 1
ð44Þ

for triplets (p-wave) cases.
From Eqs. (37) and (40) it follows that off-diagonal elements of the Green function are

�GG12ðk;EÞ ¼
�GG11ðk;EÞ þ �GG22ðk;EÞ
2E� S11ðEÞ � S22ðEÞ

�D0D0zk ð45Þ

for singlets and

�GG12ðk;EÞ ¼
�GG11ðk;EÞ þ �GG22ðk;EÞ
2E� S11ðEÞ � S22ðEÞ

ð�DDx
0 sin kxaþ �DDy

0 sin kyaÞ ð46Þ

for triplets, where zk ¼ gk or hk.
Interestingly, the linearized gap equation can be written in a way similar to that for

the clean system (Eq. (19))

1 ¼ jUj
p

ð1
�1

dE tanh
Ebc

2
Im

�GGs;d;pðEÞ
2E� Tr S ðEÞ : ð47Þ

where the imaginary parts of �GGs;d;pðEÞ define the projected densities of states for a
disordered system �NNsðEÞ, �NNdðEÞ and �NNpðEÞ discussed in Appendix A. Moreover, as in
the case of a clean system (Eqs. (20))

�NNs;d;pðEÞ ¼ � 1
p

Im �GGs;d;pðEÞ ¼ � 1
pN

P
k

z0k Im
1

E� S11ðEÞ � ek þ m
; ð48Þ

where z0k ¼ ðgkÞ
2=4; ðhkÞ

2=2 or 2ðsin ðkxaÞÞ2 depending on the symmetry of solution:
extended s-, d- and p-wave. Figures 5b–d show the corresponding projected densities of
states of a disordered system (Eq. (55)): �NNsðEÞ, �NNdðEÞ and �NNpðEÞ. Like for �NNðEÞ (Fig.
5a) for weak disorder, Van Hove singularities survive. Thus, it is clear that the smearing
of the Van Hove singularity in Figs. 5a–d implies a weakening of the Van Hove en-
hancement of the critical temperature Tc.

For our simple model of disorder of binary alloy AcB1�c with c ¼ 0.5 the coherent
potential S11ðEÞ satisfies the CPA equation [72]:

S11ðEÞ ¼ ð 1
2 d � S11ðEÞÞ �GG11ði; i;EÞ ð 1

2 d þ S11ðEÞÞ : ð49Þ

In Fig. 6a, b we also show the corresponding self energy SðEÞ which in on-site CPA
depends only on the energy E but not on the wave vector k. One can see that for a
relatively weak disorder strength d the maximum of jIm S11ðEÞj is exactly at the Van
Hove singularity as in the Born approximation [12, 19, 20]

Im SðEÞ � �pd2

4
�NNðEÞ : ð50Þ

The above result is valid also below the critical temperature Tc because for off-diagonal
pairing Dii ¼ 0 [19, 20] and Eq. (49) is still valid.
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In case of a larger disorder strength d
the maximum of jIm S11ðEÞj is located in
some other energy according to the model
of disorder we use (Eqs. (1), (35)–(41)). Si-
multaneously the real part of self energy
Re S11ðEÞ is changing with energy E renor-
malizing the chemical potential m (Eq. (48)).

Let us investigate the additional effect of
disorder visible in Eq. (47). Comparing this
equation with the clean system one (Eq.
19) one can notice the difference in the de-
nominator, where in case of disordered sys-
tem there is an additional strong scattering
term Tr SðEÞ.

To examine it further let us rewrite the
gap equation in terms of Matsubara fre-
quencies wn

1 ¼ jUj
bc

P
n

eiwnh
�GGs;d;pði; i; iwnÞ

iwn � S11ðiwnÞ
; ð51Þ

for s-, d- and p-wave symmetry.
Now, let us approximate the normal state self energy S11ðiwnÞ and projected density

of states �NNaðiwnÞ by

SðiwnÞ � �i jS0j sgn ðwnÞ ð52Þ
�NNaðiwnÞ ¼ Naðiwn � SðiwnÞÞ � Nðiwn þ i jS0j sgn ðwnÞÞ

¼ � 1
p

Im Ga
11ði; i; iwn þ i jS0j sgn ðwnÞÞ : ð53Þ

In Fig. 7a we have plotted the densities NdðiwÞ NpðiwÞ NsðiwÞ versus the imaginary
part of the energy iw for the Fermi energy EF chosen at the Van Hove singularity
(EF ¼ Ev ¼ 0).

Note that in that region we can roughly approximate the corresponding projected
densities by a simple formula

NaðiwnÞ ¼
aa

wn þ ba
; ð54Þ

where aa and ba are constants depending on the pairing symmetry a ¼ s, d, p. Introdu-
cing Eq. (54) and Eqs. (52) and (53) into Eq. (51) we get

1 ¼ jUj aaTc
P

wn>0

2
wn þ S0

1
wn þ ba

: ð55Þ
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Fig. 6. Normal state parts of self energy SðEÞ:
a) imaginary and b) real for different values of d



Now we have to perform the summation
over wn for clean (S0 ¼ 0) and disor-
dered cases (S0 6¼ 0). After some algebra
(Appendix C) we get the approximate
pair-breaking formula

w
1
2

� �
� w

1
2
þ ba

2pTc0

� �
¼ w

1
2
þ S0

2pTc

� �

� w
1
2
þ S0

2pTc
þ ba

2pTc

� �
; ð56Þ

Note that in the limit the constant den-
sity of states NaðiwÞ ¼ const. (Eq. 54),

ba ! 1, we get automatically the the standard Abrikosov-Gorkov formula [3] with a
characteristic pair-breaking parameter qc ¼ jIm S0j=ð2pTcÞ;

ln
Tc

Tc0

� �
¼ w

1
2

� �
� w

1
2
þ qc

� �
: ð57Þ

In Eqs. (64) and (65) Tc0 denotes the critical temperature in a clean system, while Tc is
the critical temperature in a dirty one.

In Fig. 7b we plot Tc=Tc0 versus S0=ð2pTc0Þ for a few values of ba. Here the chemi-
cal potential m was fixed at the saddle point Van Hove singularity Ev1. Interestingly, the
slope of the curve (Fig. 7b) is increasing with decreasing ba indicating that in the pre-
sence of Van Hove singularities for a disordered system we get weaker decreasing of Tc

than for a flat density of states. Thus, for d-wave pairing ba ¼ 0:12 and for p-wave
ba ¼ 0:45 the superconducting phase is more stable than in the case of extended s-wave
pairing, where ba ! 1 (Fig. 7a). This is the main result obtained in this section. In
spite of very rough approximation used here the results show that the Van Hove singu-
larity influences the pair-breaking effect. Namely increasing the critical strength of dis-
order S0 needed to break the Cooper pairs makes superconductivity more robust.

4. Critical Temperature for Disordered Superconductors

Let us now turn to the case where both superconductivity and disorder are present
[73–76] and calculate the critical temperature Tc self-consistently. Although the full
CPA program can be implemented for the problem defined by Eqs. (9), (10) and
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Fig. 7. a) Imaginary part of the Green func-
tions: �Im Gd, �Im Gp and �Im Gs versus the
imaginary energy iw, fitted lines aa=ðba þ wÞ are
plotted for d-wave pairing (ba ¼ 0:12) and
p-wave pairing (ba ¼ 0:12), aa ¼ 2=3 for both
curves; b) the critical temperature Tc versus the
pair breaking parameter jS0j in the limit of
weak disorder (both Tc and jS0j are normalized
to Tc0 of a clean system) for a few values of ba.
The limit ba ! 1 corresponds to the standard
Abrikosov-Gorkov formula (Eqs. (58)–(59))



(B.1)–(B.4) [76, 78] and the specification of the site energy ensemble, it is convenient
to make the approximation, valid when the coherence length x0 is much larger then the
lattice spacing, that the pairing potential Dij does not fluctuate very much and replace it
in Eqs. (3) and (5) by its average value �DijDij [79]. For conventional isotopic s-wave pair-
ing the gap equation at Tc takes the simple form (Eq. (34)). Thus, the critical tempera-
ture Tc at the optimal doping should be only slightly reduced by disorder due to smear-
ing of the density of states �NNðEÞ. The results of numerical calculations for four different
values of the disorder strength d in case of the on-site attraction is presented in Fig. 4c.
Clearly, in this case the critical temperature Tc is slightly reduced by the effect of the
density of states.

On the other hand, for the off-diagonal attraction case the linearized gap equation, in
presence of disorder, is given by Eq. (57). Solving it for extended s-, d- and p-wave
pairing symmetries we get the critical temperature Tc versus band filling. The results
for various d are presented in Fig. 4a (extended s- and d-wave) and Fig. 4b (p-wave).
Here, we observe significant degradation of Tc in all three anisotropic pairing cases.
Moreover, in some regions of electron concentration, disappearing of a superconducting
phase can be noticed for relatively weak disorder (d � 0:6t). Especially this happens to
the s-wave case with high electron concentration n ! 2 and n � 0:8 as well as the
d-wave case for n � 1:2 (Fig. 4a). The dramatic degradation of extended s-wave super-
conductivity for n > 0:3 can also be seen for stronger disorder (d ¼ 1t). In that region
of electron concentration n, due to the binary alloy model of disorder AcB1�c and
c ¼ 0:5, the position of energy E for the maximum of the pair-breaking term
jIm S11ðEÞj � S0 (Fig. 6) coincides with the chemical potential m making the pair-break-
ing mechanism very efficient. Similar behaviour can be seen for p-wave superconductor
(Fig. 4b). Clearly, for large enough jIm S11ðEÞj (Figs. 4a, b) the superconductivity is
destroyed by the pair-breaking effect shrinking the region of n for Tc > 0. In the same
time the corresponding projected densities are not strongly affected (Fig. 5). The results
for anisotropic pairing in Figs. 4a, b are contrasting with Fig. 4c where we plotted the
results for the on-site solution with U ¼ Uii. Here, (Fig. 4c) the region of band filling n,
where a superconducting solution exists, does not change with disorder at all.

5. Conclusions and Remarks

We have analyzed the effect of disorder on the disordered Hubbard model with local
and non-local nearest neighbour interactions as well as nearest and next neighbour
electron hopping terms. We have got numerical and analytical results confirming pre-
vious works on the similar model with a simple band energy [19, 20]
Ek ¼ �2tðcos kxaþ cos kyaÞ. Such a dispersion relation introduces the electron-hole sym-
metry for a half filled band n ¼ 1 and locates the saddle point Van Hove singularity
exactly in the center of the band (Figs. 1a, b). Including the additional hopping t0 we
break the electron–hole symmetry in the densities of states, resulting in shifting the
central Van Hove saddle point singularity to the bottom of the band. In the same time
another Van Hove singularity, located at the bottom band edge, appears to be impor-
tant. Thus, the effect of the Fermi surface distortion makes place both of singularities
very close to each other. For some of the band filling values n � 0:4 both singularities
play important roles. It is clear after analyzing the appropriate projected densities of
states Na. Moreover various pairing symmetries choose different Van Hove singulari-
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ties. The d-wave symmetry is favored in case of the regions of band fillings n with
chemical potential m near the saddle point singularity Ev while extended s-wave pairing
symmetry is more likely as far as the bottom edge singularity is concerned. Interest-
ingly, on account of the non-symmetricity of electron density of states the Van Hove
scenario is fulfilled only approximately. Here we observe a small interaction dependent
shift of the optimal doping electron concentration n � nop towards the center of the
band. As a result of the above we conclude that the Van Hove singularity is important
for all discussed symmetries of the order parameter. Interestingly, in presence of an
additional electron hopping to the next nieghbour lattice site t0, the shift of the saddle
point Van Hove singularity in the density of states explains that the superconductor
with an extended s-wave symmetry is rather of the electron type and with a d-wave
symmetry of hole nature. Note also that the positions of the maximum value of �NNsðEÞ,
�NNdðEÞ, �NNpðEÞ (Fig. 5) are not affected by small disorder. Nevertheless small density of

states effects are leading to smearing peaks in the corresponding densities: �NNsðEÞ,
�NNdðEÞ and �NNpðEÞ (Eq. (48), Fig. 5), the critical temperature Tc, plotted in Figs. 4a–b, is

degradated strongly with disorder. This is due to the pair-breaking term S11ðwnÞ (Eq.
(51)). In the negative U on-site interaction there is a quite different situation. Here
disorder causes only a small decrease of Tc (Fig. 4a) via a density of states effect (Fig.
5a). So, the most interesting effect arises from the Eqs. (51) and (55), where S11ðEÞ
acts as a pair breaker.

Concluding our results we would like to stress that the Van Hove singularity does not
make the decrease in Tc more pronounced than expected (because singularities are
present in the self-energy Im S11ðEÞ � NðEÞ, Fig. 6). In fact singularities make it weak-
er. We have analyzed this effect very carefully in Section 3, finding an approximate
pair-breaking formula (Eq. (56)). Here, the Van Hove singularity influenced the pair-
breaking Abrikosov-Gorkov curve, changing its slope of the Tc versus S0. A similar
effect has been observed in the experimental results for Zn-doped LSCO [49]. Alterna-
tively this effect can be also explained assuming anisotropic scattering potentials [6, 7].

Finally, we observed the dependence of Tc on band filling n. Our results for d-wave
superconductor show that the Van Hove scenario is valid even in the presence of weak
disorder (Fig. 4). Similar experimental results were obtained by measuring Tc in various
cuprate compounds as a function of hole concentration, where Cu were substituted by
Zn [41, 42]. The concentration of Zn was there the measure of disorder.

However it should be noted that high Tc cuprates are strongly correlated electron
systems and the mean field approach, basing on the effective intersite attraction Uij

presented here, has a limited applicability [69]. Strictly speaking a more realistic model
should possess a strong Coulomb repulsion term, besides an intersite attraction.
Although the approximations we used in the present paper aimed to explain the effect
of the Van Hove singularity in the presence of disorder in a weak coupling regime, the
preliminary calculations using simultaneously slave boson technique and CPA [81]
seams to support the general arguments of the Van Hove singularities significance for
superconducting cuprates conjectured here.

Appendix A

In this appendix we apply the recursion method to calculate the appropriate densities
of the states. Let us investigate the projected densities of the states NsðEÞ, NdðEÞ,
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NpðEÞ and the corresponding Green functions, �GGsðEÞ, �GGdðEÞ and �GGpðEÞ,

NsðEÞ ¼ � 1
p

Im GsðEÞ ¼ � 1
N

P
k

g2
k

4
1
p

Im G11ðk;EÞ ;

NdðEÞ ¼ � 1
p

Im GdðEÞ ¼ � 1
N

P
k

h2
k

4
1
p

Im G11ðk;EÞ ; ðA:1Þ

NpðEÞ ¼ � 1
p

Im GpðEÞ ¼ � 1
N

P
k

2ðsin kxÞ2 1
p

Im G11ðk;EÞ ;

where gk and hk were defined in Eq. (11).
Noting trigonometric identities

g2
k

4
¼ 1

2
ðcos 2kx þ cos 2kyÞ þ 1 þ 2 cos kx cos ky ;

h2
k

4
¼ 1

2
ðcos 2kx þ cos 2kyÞ þ 1 � 2 cos kx cos ky ; ðA:2Þ

2ðsin kxÞ2 ¼ 1 � cos 2kx ;

the Green functions GsðEÞ, GdðEÞ and GpðEÞ can be easily found as a combination of
diagonal and off-diagonal Green functions G11ðiþ di; iþ dj;EÞ ¼ Gdi; djðEÞ, see the no-
tation in the schematic picture (Fig. 8),

GsðEÞ ¼G00ðEÞ þG20ðEÞ þ 2G11ðEÞ ;

GdðEÞ ¼ G00ðEÞ þG20ðEÞ � 2G11ðEÞ ; ðA:3Þ
GpðEÞ ¼ G00ðEÞ �G20ðEÞ :

Function G00ðEÞ, G20ðEÞ and G11ðEÞ have been calculated using the recursion method
[19, 20, 80].

The above procedure can also be used to calculate the average of projected densities
�NNsðEÞ, �NNdðEÞ and �NNpðEÞ as well as the averaged Green functions �GGsðEÞ, �GGdðEÞ and
�GGpðEÞ can be calculated via substitution E by E� S11ðEÞ, where local

S11ðEÞ ¼ S11ði; i;EÞ should be found self-consistently according to CPA conditions
(Eqs. (37)–(43)):

�GGs;d;pðEÞ ¼ Gs;d;pðE� S11ðEÞÞ
�NNs;d;pðEÞ ¼ Ns;d;pðE� S11ðEÞÞ: ðA:4Þ

1444 G. Litak: Van Hove Singularity and Superconductivity

Fig. 8. Schematic picture of diagonal and off-diagonal
Green functions Ga;b ¼ Gðax̂x þ bŷyÞ



Appendix B

In this appendix we apply CPA equations (Eqs. (18)–(21)) to the disordered Hubbard
model with the on-site attraction Eq. (1) (Uij ¼ Uiidij) and discuss the Anderson theo-
rem [1, 79]. The averaged Green function, �GGði; i;EÞ can be expressed as

�GGði; i;EÞ ¼ 1
N

P
k

�GGðk;EÞ ¼ 1
N

P
k

E� Ek � S11ðEÞ �S12ðEÞ
�S21ðEÞ Eþ Ek � S22ðEÞ

� ��1

;

ðB:1Þ
while the conditionally averaged Green function has the form

Gaði; i;EÞ ¼ �GGði; i;EÞ ð1 � ½Va � SaðEÞ� �GGði; i;EÞÞ�1 : ðB:2Þ
The disordered potential in Eq. (18) has the form [76, 77, 78]

Va ¼ ea �Da

�D*a �ea

� �
; ðB:3Þ

where ea ¼ eA or eB corresponds to different site energies of the lattice site while
Da ¼ DA or DB relates to the different pairing potential in an alloy AcB1�c.

Clearly, the coherent potential can be written as

SðEÞ ¼ S11ðEÞ S12ðEÞ
S21ðEÞ S22ðEÞ

� �
: ðB:4Þ

Function �GG12ði; i;EÞ can be obtained from Eq. (B.1)

�GG12ði; i;EÞ ¼
�GG11ði; i;EÞ þ �GG22ði; i;EÞ
2E� S11ðEÞ � S22ðEÞ

S12ðEÞ

¼ Ga
11ði; i;EÞ þGa

22ði; i;EÞ
2E� S11ðEÞ � S22ðEÞ

S12ðEÞ
� �

; ðB:5Þ

while from Eq. (B.4) we have the relations

Tr Gaði; i;EÞ ¼ Det Gaði; i;EÞ Tr �GGði; i;EÞ
Det �GGði; i;EÞ

� S11ðEÞ � S22ðEÞ
� �

; ðB:6Þ

Ga
12ði; i;EÞ ¼ Det Gaði; i;EÞ

�GG12ði; i;EÞ
Det �GGði; i;EÞ

� Da � S12ðEÞ
� �

: ðB:7Þ

The substitution of Eq. (B.6) and (B.7) into the right and left hand sides of Eq. (B.5),
respectively, an equation on S12ðEÞ and Da leads to

2ES12ðEÞ
2E� S11ðEÞ � S22ðEÞ

¼ Da Det Gaði; i;EÞh i
Det �GGði; i;EÞ
� � : ðB:8Þ

Using (B.6) and factorizing of the equation above we get

2ES12ðEÞ
2E� S11ðEÞ � S22ðEÞ

� c Tr GAði; i;EÞ DA þ ð1 � cÞ Tr GBði; i;EÞ DB

Tr �GGði; i;EÞ
: ðB:9Þ

In the limit of a small pairing potential fluctuations Di ! �DD ¼ const: can be used to
satisfy the Anderson theorem. Then

2ES12ðEÞ
2E� S11ðEÞ � S22ðEÞ

� �DD ðB:10Þ
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and renormalized quantities of w and �DD read as

2 ~EE ¼ 2E� Tr SðEÞ ;

~DDðEÞ ¼ S12ðEÞ ¼
ð2E� Tr SðEÞÞ

2E
�DD : ðB:11Þ

This leads to the same renormalization in the pair potential D and energy E

~DDðEÞ
�DD

¼
~EE

E
; ðB:12Þ

and the linearized gap equation can be written as follows:

�DD ¼ �U

p

ð1
�1

dE
Im ð �GG11ðEÞ þ �GG22ðEÞÞ ~DD

2 ~EE

1
ebE þ 1

¼ �U

p

ð1
�1

dE
Im �GG11ðEÞ �DD

2E
tanh

bE

2

� �
; ðB:13Þ

1 ¼ U

ð1
�1

�NNðEÞ dE
tanh ðbcEÞ

2w
; ðB:14Þ

where NðEÞ denotes normal state DOS:

�NNðEÞ ¼ � 1
p

Im G11ðEÞ : ðB:16Þ

Appendix C

In this appendix we apply CPA to anisotropic superconductor and evaluate the approx-
imate formula of the pair-breaking effect. Starting from the clean system we assume
that the linearized gap equation can be written (Eqs. (53)–(57)) as

1 ¼ jUj aapTc0
P

wn>0

2
wn

1
wn þ ba

� jUj aa2pTc0

ba

Pwc
n

wn>0

1
wn

� 1
wn þ ba

� �
; ðC:1Þ

where wc
n is a cut-off in the summation (C.1). As wc

n is very large, it yields

ba

jUjaa
� w

1
2

� �
� w

1
2
þ ba

2pTc0

� �
: ðC:2Þ

On the other hand for a disordered system we have

1 ¼ jUj aapTc
P

wn>0

2
wn þ jS0j

1
wn þ jS0j þ ba

� jUj aa2pTc

ba

Pwc
n

wn>0

1
wn þ jS0j

� 1
wn þ ba þ jS0j

� �
: ðC:3Þ

Similarly to Eqs. (C.1) and (C.2) it leads to

ba

jUjaa
� w

1
2
þ qc

� �
� w

1
2
þ qc þ

ba

2pTc

� �
; ðC:4Þ
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and finally comparing Eqs. (C.2) and (C.4) we get

w
1
2

� �
� w

1
2
þ ba

2pTc0

� �
¼ w

1
2
þ qc

� �
� w

1
2
þ qc þ

ba

2pTc

� �
; ðC:5Þ

where qc is a pair–breaking parameter

qc ¼
jS0j
2pTc

ðC:6Þ

and Tc0 is the critical temperature for a clean superconductor.
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[6] G. Harań and A. D. Nagi, Phys. Rev. B 58, 12441 (1998).
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