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We examined the Duffing system with a fractional damping term. Calculating the basins of attraction, we
demonstrate a broad spectrum of non-linear behaviour connected with sensitivity to the initial conditions and
chaos. To quantify dynamical response of the system, we propose thestatistical 0-1 test as well as the maximal
Lyapunov exponent; the application of the latter encounter a few difficultiesbecause of the memory effect due
to the fractional derivative. The results are confirmed by bifurcation diagrams, phase portraits and Poincaré
sections.

The concept of fractional derivatives goes back to a dis-
cussion that Leibniz and L’Hospital had over 300 years
ago about the half order derivative. The problem attracted
attention of many scientist (see Podlubny [1] and Petras [2]
and references therein). Generally, it is assumed that the
fractional order derivative is useful for a better descrip-
tion of real phenomena. For example, damping in mechan-
ical devices is commonly modeled as a function (linear or
nonlinear) of first order derivative and can be replaced
by fractional damping (in some cases with an appropriate
physical meaning). To solve a fractional differential equa-
tion, one has to approximate the corresponding derivative
operator, which means including information about previ-
ous states of the system (the so-calledmemory effect). This
effect introduces additional degrees of freedom. Such mul-
tidimensional dynamical systems meet difficulties in non-
linear analysis and require a special treatment for chaos
detection.

I. INTRODUCTION

Systems with fractional damping, that depends on the ve-
locity history, have generated a lot of interest and were ex-
tensively studied in the last decade [3–9]. Actually, to model
complex energy dissipation with a minimum number of pa-
rameters using hysteresis and/or memory effect, a fractional
order derivative damping term is proposed, namely, the damp-
ing force is proportional to a fractional derivative of the dis-
placement, in contrast to the classical case (first order deriva-
tive of the displacement). The memory of the system was
found to be an important factor in different research areas
[7, 8]. For instance, the problem of non-viscous damping
with hysteresis has been investigated in the context of appli-
cations for a magnetorheological fluid [10]. Similarly, this
concept was used to model damping in a vehicle tire [11] and
in plates made of composite materials [12, 13]. Furthermore,
the memory modelled by fractional derivatives was also ap-

plied to the problem of shock interactions of an impactor with
a rigid target [14], to study visco-elastic properties of beams,
plates and cylindrical shells [7], to tune of the proportional-
integral-derivative (PID) controller and to model heat conduc-
tion in complex materials [8]. Finally, fractional derivatives
were also used to optimize evolutionary algorithms [8].

Previous researches on the Duffing system with a fractional
damping term [5, 6] were focused on the influence of the order
of the derivative or amplitude of the excitation on the dynam-
ics of the system. In the present paper, we demonstrate that
the system is sensitive to initial conditions, which can be as-
certained by determining basins of attraction. Moreover, we
quantify different types of attractors by the 0-1 test that can
be used instead of the Maximal Lyapunov Exponent (MLE).
Contrary to the MLE, the 0-1 test does not need any phase
space reconstruction. The main advantage of the test is its
fairly low computational effort. It is based on the dynamical
system properties of frequency distribution and, like its previ-
ous approaches [15, 16], it originates from a single frequency
transform.

II. THE MODEL

We start with the standard well known nonlinear Duffing
equation:

d2x

dt2
+ α

dx

dt
− x + x3 = δ cos (ωt) (1)

whereα ≥ 0 denotes the damping coefficient,δ denotes the
amplitude andω denotes the frequency of external excitation.
The model describes the dynamics of a mass in a double po-
tential well and exhibits chaotic behaviour [17, 18]. To in-
troduce a fractional derivative to the dynamical system, the
widely used Gr̈unwald-Letnikov and Riemman-Liouville def-
initions are applied. Both of them are particular cases of a
general fractional order operator - namely, the former repre-
sents theq order derivative, while the later represents theq
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fold integral. In this sense, the class of functions described by
the Riemman-Liouville definition is broader (function must
be integrable) than the one defined by Grünwald and Letnikov
(function must bem + 1 continuously differentiable). How-
ever, for a function of the Grünwald - Letnikov class, both
definitions are equivalent.

Introducing the first order derivative, we will briefly
demonstrate the idea of noninteger derivative. Let us consider
the first and second order derivative:

f ′(t) = lim
h→0

f(t) − f(t − h)

h
(2)

f ′′(t) = lim
h→0

f ′(t) − f ′(t − h)

h
(3)

= lim
h→0

f(t) − 2f(t − h) + f(t − 2h)

h2

Continuing, one can write a general form of then-th order
derivative:

fn(t) = lim
h→0

1

hn

n
∑

j=0

(−1)j

(

n

j

)

f(t − jh) n ∈ N (4)

which leads to the Grünwald - Letnikov definition [1]:

dqf

dtq
≡a Dq

t f(t) (5)

= lim
h→0

1

hq

[ t−a

h ]
∑

j=0

(−1)j

(

q

j

)

f(t − jh),

whereq > 0 and the binomial coefficients can be extended to
real numbers using the Euler Gamma function

(

q

j

)

=
q!

j!(q − j)!
=

Γ(q + 1)

Γ(j + 1)Γ(q − j + 1)
; (6)

a pair of square brackets[.] appearing in the upper limit of
the sum denotes the integer part, whilea is the length of the
memory, respectively.

According to the short memory principle [1, 2], the length
of system memory can be substantially reduced in the numer-
ical algorithm to get reliable results. Thus, Eq. (5) becomes

LDq
t f(t) = lim

h→0

1

hq

[N(t)]
∑

j=0

(−1)j

(

q

j

)

f(t − jh), (7)

whereN(t) = min( t−L
h

, L
h
). Note that by this choice we do

not need initial conditions beforet = 0, as is usually required
for other systems with memory. Now, the Duffing system with
a fractional damping term has the following form:

d2x

dt2
+ α

dqx

dtq
− x + x3 = δ cos (ωt) (8)

Equation (8) can be decomposed into a set of equations of
lower degree:

LD1
t x(t) = y(t)

LDq
t x(t) = w(t)

LD1
t y(t) = x(t) + αw(t) − x3(t) + δ cos (ωt)

(9)

The set of equations can be written in the discretized form
by the following fractional order Newton-Leipnik algorithm
[2]:

x(tk) = x(tk−1) + y(tk−1)h (10)

x(tk) = w(tk−1)h
q −

N−1
∑

j=1

c
(q)
j x(tk−j) (11)

y(tk) = y(tk−1) + [αw(tk−1) − x3(tk−1) (12)

+ δ cos (ω(tk−1))]h,

whereh is the integration step and the coefficientsc
(q)
j satisfy

the following recursive relations:

c
(q)
0 = 1, c

(q)
j =

(

1 −
1 + q

j

)

c
(q)
j−1. (13)
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FIG. 1. The phase portraits and Poincaré point for the period one
numerical solution of Eqs. (10) - (12) withq = 0.6, α = 0.15,
δ = 0.3 andω = 1.0 for the initial conditions(x0, y0) = (0.2, 0.3).
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FIG. 2. The phase portraits and Poincaré sections for the period two
numerical solution of Eqs. (10 - 12) withq = 0.8, α = 0.15, δ = 0.3
andω = 1.0 for the initial conditions(x0, y0) = (0.2, 0.3).
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FIG. 3. The phase portraits and Poincaré sections for the chaotic
numerical solution of Eqs. (10 - 12) withq = 1.0, α = 0.15, δ = 0.3
andω = 1.0 for the initial conditions(x0, y0) = (0.2, 0.3).

Note that by comparing the left hand sides of Eqs. 10 and
11 we get the formula:

w(tk−1) =
1

hq
[x(tk−1)+y(tk−1)h+

N−1
∑

j=1

c
(q)
j x(tk−j)](14)

which can be used in Eq. (12).

The set of equations Eqs. (10-12) has been solved numeri-
cally for the system parametersα = 0.15, δ = 0.3, ω = 1.0
and with initial conditions(x0, y0) = (0.2, 0.3). The phase
portraits for the order of the derivativeq = 0.6, 0.8, 1.0 (the
integration step wash = π/100) are plotted in Figs. 1 - 3,
respectively.

Analyzing Figs. 1 - 3, one can notice the evolution of the
solution with increasingq: from period one to period two be-
haviour through a period doubling bifurcation, to non-periodic
(chaotic) solution. Note that forq = 1.0 the coefficients
cj = 0, j = 1, .., n (Eq. 13) and we get the standard double-
well Duffing model without the memory effect.

III. BIFURCATIONS CAUSED BY THE ORDER IF THE
DERIVATIVE

A more systematic analysis of the system behaviour and of
its evolution by changing the order of the derivativeq can be
performed by using a corresponding bifurcation diagram. In
Fig. 4 one can clearly see the regions ofq for which the sys-
tem response changes from non-periodic to periodic through
a period doubling cascade, and again to non-periodic (for the
same initial condition(x0, y0) = (0.2, 0.3)). Note that for
q = 1 we get a non-periodic solution corresponding to the so-
lution for the standard Duffing model with a viscous damping
term.

FIG. 4. The bifurcation diagram of thex coordinate versus the order
of the derivativeq ∈ [0.01, 2.0]; ∆q = 0.001 and initial conditions
for eachq were(x0, y0) = (0.2, 0.3). Other system parameters are:
α = 0.15, δ = 0.3, andω = 1.0.

IV. TEST 0-1 FOR PERIODIC AND NONPERIODIC
SOLUTIONS

To quantify the results obtained, we use the 0-1 test for
chaos detection [19–26]. This test combines both spectral and
statistical properties of the system and can distinguish differ-
ent types of dynamic of the system by computing a number
K ∈ {0, 1}.

Below, a brief description of the test 0-1 is reported. Firstof
all, we change the coordinates from(x, ẋ) to a new set(p, q)
defined as follows

p(n) =

n
∑

j=1

x̃j cos (jc), q(n) =

n
∑

j=1

x̃j sin (jc), (15)

wherex̃ = [x̃1, x̃2, x̃3, ...] is the discrete time series sampled
from the originally simulatedx using one-fourth of excitation
period (as in [27]). The time intervalT/4 (T = 2π/ω) corre-
sponds to the nodal autocorrelation function of excitationhar-
monic termδcos(ωt). Note that, relevant sampling can make
shorter the length of time series used in the calculations, thus
leading to a reduction in the computation time. Finally,c is
constant,c ∈ (0, π). One can see that Eq. (15) resembles the
Fourier transform for a chosen frequency (in the limit of larger
n).

In the next step, one computes the Mean Square Displace-
ment (MSD) ofp andq:

MSD(c, j) =
1

n − j

n−j
∑

i=1

{

[p(i + j) − p(i)]2

+[q(i + j) − q(i)]2
}

, (16)

where0 ≪ j ≪ n (in practicen/100 ≤ j ≤ n/10). The
main criterion is based on the trends of MSD(c, j) in the
higher j limit. It is bounded for regular dynamics or un-
bounded for chaotic dynamics[19–26].

The final quantityK is calculated as an asymptotic growth
rate of MSD (here given by the correlation method):
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K(c) =
Cov[j,MSD(c, j)]

√

Cov[j, j] · Cov[MSD(c, j),MSD(c, j)]
,

(17)

where j is based on a series of natural numbers:j =
n/100, n/100 + 1..., n/10, and Cov[x,y] denotes the corre-
sponding covariance of two series where for the same argu-
mentsx = y we get variance, while for a different (x = j
andy = MSD(c, j)) it can be expressed as the expectation
value E[.]:

Cov[j,MSD(c, j)] =

E[[j − E[j]] · [MSD(c, j) − E[MSD(c, j)]]]. (18)

Unfortunately, the final valueK might differ for different
values ofc, so we took100 values ofc equally spaced from
the interval(0.1, π−0.1) and computedK as the median. An
example of the functionK(q) obtained with this algorithm is
reported in Fig. 5.
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FIG. 5. K versusq with the sampling∆q = 0.001, the initial con-
ditions for eachq were:(x0, y0) = (0.2, 0.3). Other system param-
eters:α = 0.15, δ = 0.3, andω = 1.0.

From both Fig. 4 and Fig. 5, one can observe regions cor-
responding to the regular motion (K ≈ 0 for q ∈ [0.1, 0.8] ∪
[1.45, 2]) and regions corresponding to the chaotic motion
(K ≈ 1, for q ∈ (0.8, 1.45)).

V. MAXIMAL LYAPUNOV EXPONENT

We have also estimated the MLE, which is commonly used
to describe the type of the dynamical systems response. In
our system this number has no direct meaning as the system
dimension could be undetermined. That is why one cannot
use the standard Wolf algorithm with the Jacobi matrix [28],
nor the Kantz algorithm with a phase space embedded from
a time series [29]. Instead, we measured the distanced(i)
between reference and test orbits, starting from disturbedini-
tial conditions with some arbitrary small initial distanced0(i),
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FIG. 6. Maximal Lyapunov Exponent as a function of the fractional
orderq ∈ [0.01, 2.0] and∆q = 0.001. The distance between neigh-
bouring trajectories has been estimated in one tenth of the excitation
period intervalT (T = 2π/ω). Other system parameters:α = 0.15,
δ = 0.3, andω = 1.0.

i = 1, ..., N , wherei denotes the subsequent interval which
is fairly smaller with respect to the excitation period. Finally,
the approximated exponent can be estimated via the following
summation

MLE =
1

∆t

N
∑

i=1

ln (d/d0) , (19)

where the time interval is∆t = 2π/(100ω) andN is suffi-
ciently large.

Note that the dimensionality of the examined system with
fractional damping could increase; here, for simplicity, the
MLE was estimated in a two-dimensional phase space(x, ẋ).

Figure 6 shows variations of the MLE with respect to the
parameterq.

Analyzing the MLE results, one can observe fairly good
agreement with the 0-1 test results in the interval ofq ∈
[0,1.5]. Beyond the valueq = 1.5, the MLE is inconsistent
with the bifurcation diagram and 0-1 test results. This discrep-
ancy corresponds to the lack of information about the distance
in higher dimensions in the algorithm given by Eq. 19.

VI. BASINS OF ATTRACTION

In the previous section, we estimated the MLE testing sen-
sitivity of solutions to perturbations along the trajectory for
given initial conditions. However, the global dynamical prop-
erties of our Duffing model with fractional damping, showing
a variety of solutions, can be investigated by basins of attrac-
tions. The stability of particular solutions can be measured
by the size of corresponding basins of attraction. We esti-
mated such basins for our system for three selected values of
derivative order of the damping term:q = {0.6, 0.8, 1.0} and
the range of initial conditions(x0, y0) ∈ [−5, 5] × [−10, 10].
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FIG. 7. Basins of attraction forq = 0.6, andα = 0.15, δ = 0.3,
ω = 1.0. The uniform colour covering the whole region of initial
conditions corresponds to the global period one regular solution.
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FIG. 8. Basins of attraction forq = 0.8 andα = 0.15, δ = 0.3,
ω = 1.0. Note the colours denote the interplay of four different
solutions. Yellow - denotes the period one regular solution; green and
blue - two different period two solutions; red - non-periodic (chaotic)
solution.

Based on Figs. 7 - 9 one can compare the complexity of so-
lutions with respect to initial conditions and the particular at-
tractors distributions calculated for corresponding steady state
solutions.

Figures 7 - 9 show significantly different dynamical be-
haviour: for q = 0.6 there is only one attractor that corre-
sponds to the period one solution (Fig. 1), forq = 0.8 there
are four types of attractors: period one, period 2 type a (Fig.
2), period 2 type b and non-periodic, forq = 1.0 there are
two types of attractors: period one and non-periodic (fig. 3).
Moreover, comparing figures 8 and 9, one can observe very
similar regions of initial conditions corresponding to thepe-
riodic solution (yellow) mixed with regions correspondingto
different solutions: period two (green, blue - fig. 8) and non-
periodic (red).
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FIG. 9. Basins of attraction forq = 1.0 andα = 0.15, δ = 0.3, ω =
1.0. Note that colours denote different solutions. Yellow - denotes
the period one regular solution while red - non-periodic (chaotic)
solution.

In Fig. (8) three different regions involving points belong-
ing to the boundaries of two other basins define Wada basins
[30, 31]. In this case the dynamics of the system becomes even
more unpredictable than these of fractal border separatingtwo
regions.

VII. CONCLUSIONS

In the paper, we examined the dynamics of the Duff-
ing model with a fractional damping term. Using nonlin-
ear methods (phase diagrams, Poincaré sections and bifurca-
tion diagrams), we highlighted significantly different system
responses by varying the order of the derivative (from non-
integer to integer). We also quantified the type of motion by
the values of two indicators: 0-1 test which is based on sta-
tistical properties of phase coordinate, and the approximate
maximal Lyapunov exponent which is based on geometrical
properties of attractor in phase space. The fractional order
of damping introduces memory effects that extend the dimen-
sion of the phase space. As a consequence of an uncertainty
in the dynamical system dimension, the maximal Lyapunov
exponent values may not correspond to the properties of the
attractor. In that case, the 0-1 method appeared to give more
adequate results. We also found sensitivity to initial condition
in the considered system. Interestingly, different valuesof the
order of damping change dramatically the basins of attraction:
from one attractor (periodic) to four attractors (periodic, two
different period two solutions and none-periodic) exhibiting
Wada basins, and finally, to two attractors (period one and
non-periodic).

One should note that any system with a fractional derivative
is characterized by long transient intervals appearing before
reaching the stationary state. This property complicates the
investigation of the system dynamics. We would like to stress
that our results for dynamics of the system were obtained after
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cutting off the corresponding long transients.
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